
EdgeServe: Efficient Deep Learning Model Caching at the Edge
Tian Guo

Worcester Polytechnic Institute
Worcester, Massachusetts

tian@wpi.edu

Robert J. Walls
Worcester Polytechnic Institute

Worcester, Massachusetts
rjwalls@wpi.edu

Samuel S. Ogden
Worcester Polytechnic Institute

Worcester, Massachusetts
ssogden@wpi.edu

ABSTRACT
In this work, we look at how to effectively manage and utilize
deep learning models at each edge location, to provide performance
guarantees to inference requests.We identify challenges to use these
deep learning models at resource-constrained edge locations, and
propose to adapt existing cache algorithms to effectively manage
these deep learning models.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Computer
systems organization→Cloud computing; •General and ref-
erence → Performance.

KEYWORDS
Deep Learning Inference, Caching Algorithm, Edge Computing,
Performance Optimization

ACM Reference Format:
Tian Guo, Robert J. Walls, and Samuel S. Ogden. 2019. EdgeServe: Efficient
Deep LearningModel Caching at the Edge. In SEC ’19: ACM/IEEE Symposium
on Edge Computing, November 7–9, 2019, Arlington, VA, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3318216.3363370

1 INTRODUCTION
Motivation. Deep neural networks (DNNs) are increasingly lever-

aged to provide rich features—such as real-time language trans-
lation, image recognition and personal assistants [4, 18, 20]—in
end-user applications. Furthermore, developers of these rich mod-
els often eschew the traditional execution model of performing
inference on the end-user device and, instead, deploy these models
on remote servers [7, 8, 16]. This switch to the cloud confers a num-
ber of benefits including the ability to benefit from complex models
that are infeasible to execute on relatively resource-constrained
end-user devices [1, 11, 14]; and the ability to maintain the confi-
dentiality of models trained on proprietary datasets [12, 19].

The benefits of cloud-based deep learning come at the cost of
novel challenges. For example, in order to use cloud-based deep
neural networks, applications must transmit and receive inference
requests and responses over highly variable networks; Figure 1
shows that the time to send a small image file can vary from
148ms to 1405ms in LTE. Such variation is magnified when sending

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEC ’19, November 7–9, 2019, Arlington, VA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6733-2/19/11.
https://doi.org/10.1145/3318216.3363370

Figure 1:Network variations and benefits of functionally-equivalent
DNN models. We measured the time for a Pixel2 running Android Oreo to
send a 330KB image. We repeated the measurement over 700 times for each
network type.

larger inference requests, e.g., audio or video clips, leading to un-
predictable end-to-end response times and making it challenging
to meet quality-of-service requirements.

In this work, we position ourselves as a hypothetical CDNprovider
that wants to provide a novel feature for their clients: model execu-
tion caching. Intuitively, model execution caching refers to a class
of solutions that execute the deep learning models on small server
clusters geographically close to end-users (i.e., edge clouds), thereby
reducing the impact of network delays and variance. We adopt the
term caching, as the solutions in this space must make resource
decisions that are reminiscent of traditional caching problems. For
example, one challenge is deciding which models should be loaded
into the memory of the limited number of available servers to
maximize the probability of servicing an incoming request without
swapping models in and out of memory, i.e., maximizing the chance
of a cache hit.

For the ease of exposition, we frame our discussion in the context
of a hypothetical system for model execution caching called Edge-
Serve. The design challenges of EdgeServe cover multiple aspects.
First, EdgeServe needs to manage a large number of deep learn-
ing models. The number of these models scale with the number
of applications, as well as the number of functionally-equivalent
models. Here, we define two models as functionally-equivalent if
they can be used to service the same type of requests, e.g., im-
age classification. As we found in previous work [15] and show in
Figure 1, applications often benefit from having access to a set of
functionally-equivalent deep neural networks that differ in execu-
tion time. Second, edge clouds are inherently resource constrained—
having fewer servers than traditional clouds. Even though it might
be possible to store all DNN models at each edge cloud, it is often
not feasible to keep all DNN models in the main and GPU memory.
Third, the cost of a model miss—dominated by the time it takes to

313

https://doi.org/10.1145/3318216.3363370
https://doi.org/10.1145/3318216.3363370


SEC ’19, November 7–9, 2019, Arlington, VA, USA Guo, et al.

accuracy
(%)

inference time
model hit (ms)

inference time
model miss(ms)

size
(MB)

#params
(M)

SqueezeNet 72.9 28.6 ± 1.1 173.4 ± 25.7 4.8 1.2
MobileNetV1 0.25 74.1 25.7 ± 1.2 272.8 ± 45.0 1.9 0.5
MobileNetV1 0.5 84.9 26.3 ± 1.2 302.8 ± 45.5 5.2 1.3
DenseNet 85.6 49.6 ± 3.2 1149.0 ± 108.0 43.9 -
MobileNetV1 0.75 88.1 28.0 ± 1.1 351.9 ± 47.4 10.5 2.6
MobileNetV1 1.0 90.6 28.2 ± 1.2 421.2 ± 47.1 17.1 4.2
NasNet Mobile 91.5 55.3 ± 4.1 2817.2 ± 123.7 21.9 5.3
InceptionResNetV2 94.0 76.3 ± 5.7 2844.3 ± 106.5 121.6 55.8
InceptionV3 93.8 55.8 ± 1.2 1950.7 ± 101.2 95.7 23.8
InceptionV4 95.1 82.8 ± 0.9 3162.2 ± 134.0 171.2 42.7
NasNet Large 96.1 112.6 ± 6.1 7054.5 ± 238.4 356.6 42.3

Table 1: Statistics of popular CNN Models. We measured the average
inference time using an EC2 p2.xlarge GPU server with 12GB GPU memory.

load models from storage to memory—can vary from hundreds of
milliseconds to a number of seconds, as shown in Table 1.

The reader might wonder why we advocate caching deep learn-
ing models instead of caching the inference results. The latter is
both more reminiscent of traditional CDN functions and attractive
from a performance perspective as it suggests EdgeServe could
service requests without needing to re-execute the model. However,
we focus on model caching as it is better suited to workloads that
are often unique and user-specific [17], e.g., images or audio clips.
Directly caching these inference results for unique user-specific
requests would not be very useful as there is a high likelihood
that EdgeServe will not be able to reuse these results, leading to
few cache hits and frequent misses. While it might be possible to
improve hit rates by designing sophisticated schemes to perform
non-trivial preprocessing [9] of incoming requests in order to map
to previously cached results [21], we argue that model execution
poses fewer demand on the model developer and thus enjoys a
lower barrier to adoption.

2 CACHING DEEP LEARNING MODELS AT
THE EDGE

Background. To leverage deep learning models hosted on edge
servers, end-user applications need to send inference requests, to-
gether with input data, that specify which deep learning model is
required to service the request. These requests are then processed
by the edge cloud. We assume that requests are first processed
by a dispatching server [2] that sits in front of a deep learning
framework, such as TensorFlow [16] or Caffe [3]. Depending on
the underlying server capacity, e.g., memory and GPU, these frame-
works often have access to multiple in-memory DNN models. If
the requested model currently resides in memory on some server
in the cluster, the framework can start executing the inference re-
quest immediately. Otherwise, the framework needs to first load
the specified model and then generate the inference result. We refer
to the former case as a model hit and the latter as a model miss.

As loading models into memory takes non-trivial time (see Ta-
ble 1), an alternative is to forward the request to an edge location
that has the model already loaded. This scenario suggests the utility
of having either centralized or distributed coordination among dif-
ferent edge locations. Regardless, when a model miss happens, the
end-to-end design goals of EdgeServe is to create a suite of model
cache algorithms that reduces model miss frequency and cost.

Problem Statement. EdgeServe will cache models in edge server
memory with the goal of providing consistent response times for in-
ference requests from end-user applications. We envision that Edge-
Serve will leverage existing edge clusters—potentially as part of
existing CDN infrastructure—and aim to provide the model caching
as a service for customers (i.e., developers). Caching deep learning
models, at its core, is to move computation closer to the end-users.
EdgeServe must efficiently decide which DNN models to preload
into the memory and which to evict when the memory is full, all
while meeting end-to-end inference response time requirements.
Here efficiency means that EdgeServe’s model management algo-
rithms should be lightweight relative to the network transfer time
and model execution time, both of which can take hundreds of
milliseconds. Compared to traditional caching problems, like vir-
tual address translation in operating systems or in-memory object
caches like memcached [13], EdgeServe can afford more complex
caching eviction and replacement algorithms. We assume that we
have a known, but limited, number of servers at each edge cloud
location; however, dynamically changing the edge cluster size (i.e.,
the cache size) represents an interesting avenue for future work.

Potential Solutions. Given that at the core of EdgeServe is a
caching problem, we propose to first evaluate the effectiveness
of existing cache replacement algorithms [6, 10, 22] in managing
deep learning models at edge locations. To leverage prior cache
algorithms, we need to adapt them to the domain of DNN models
by defining the utility and cost of a cache miss.

Before the edge server’s memory capacity is reached, we propose
to leverage historical model usage patterns to pre-load popular
DNN models into memory. Here, DNN model usage statistics can
be recorded directly by EdgeServe. To decide which models to evict
from memory, we need to have access to runtime model memory
utilization. These could be obtained by instrumenting the deep
learning frameworks [5] or estimating through stress test offline.
Moreover, we need to quantify the utility of DNN models and the
cost of model misses. We propose to use DNN model accuracies and
computation complexities to derive the utility, e.g., highly accurate
and faster DNN model will have higher utility. We further propose
to use DNN runtime memory consumption and the time to load
DNN models into memory as two key aspects of model misses cost.

Preliminary results. In this work, we conducted an initial mea-
surement study to demonstrate the feasibility and illustrate the
challenges of caching models at edge clouds. We focus on a pop-
ular type of model, convolutional neural networks (CNNs), that
are often used for image classification. We looked at more than
ten popular pre-trained CNN models and reported their inference
accuracies and model sizes in Table 1. We summarize our initial
observations below.

First, we observe that the persistent storage requirements are
relatively modest as it is possible to store tens of thousands of CNN
models at each edge location. Importantly, this implies that each
edge location might be able to store the complete set of models
and thus we need not consider (at least initially) the problem of
distributing models amongst the clusters.

Second, themodel miss overhead not only prolongs the execution
time by up to 63X, but also leads to more time variation—ranging
from a few milliseconds to hundreds of milliseconds—making it

314



EdgeServe: Efficient Deep Learning Model Caching at the Edge SEC ’19, November 7–9, 2019, Arlington, VA, USA

harder to predict the impact of amodel miss. To obtain these results,
we set up the smallest GPU server in Amazon EC2 to host the
models. To quantify the overhead of a model miss, we measured the
execution time with model hit and model miss of using each CNN
model over 3000 input images. Note, the difference between model
hit and miss is whether the CNN model has already been loaded
into the server memory.

3 SUMMARY
In this work, we proposed the caching of DNN models at edge
locations to improve performance without degrading inference ac-
curacy. We empirically demonstrated the benefits of hosting DNN
models in edge clouds and illustrated the key challenges in design-
ing model caching systems.
Acknowledgments. We thank Guin R. Gilman for her help in
proofreading the final version of this paper. This work is sup-
ported in part by National Science Foundation grants #1755659
and #1815619 and Google Cloud Platform Research credits.

REFERENCES
[1] List of hosted models. https://www.tensorflow.org/lite/models.
[2] Nvidia/tensorrt-inference-server: The tensorrt inference server pro-

vides a cloud inferencing solution optimized for nvidia gpus.
[3] Delivering real-time AI in the palm of your hand. https:

//code.facebook.com/posts/196146247499076/delivering-real-
time-ai-in-the-palm-of-your-hand/, 2016.

[4] Deep Learning for Siri’s Voice: On-device Deep Mixture Density Net-
works for Hybrid Unit Selection Synthesis. https://machinelearning.
apple.com/2017/08/06/siri-voices.html, 2017.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015.

[6] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network.
In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17).

[7] T. Chen, M. Li, Y. Li, M. Lin, N.Wang,M.Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems. arXiv:1512.01274.

[8] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica. Clipper: A low-latency online prediction serving system. In

14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’17).

[9] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding.
arXiv:1810.04805.

[10] B. S. Gill and D. S. Modha. Sarc: Sequential prefetching in adaptive
replacement cache. In USENIX Annual Technical Conference, 2005.

[11] T. Guo. Cloud-based or on-device: An empirical study of mobile deep
inference. In 2018 IEEE International Conference on Cloud Engineering
(IC2E ’18).

[12] F. Mo, A. S. Shamsabadi, K. Katevas, A. Cavallaro, and H. Haddadi.
Towards characterizing and limiting information exposure in DNN
layers. arXiv:1907.06034.

[13] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling memcache at facebook. In the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13).

[14] S. S. Ogden and T. Guo. MODI: Mobile deep inference made efficient by
edge computing. In USENIXWorkshop on Hot Topics in Edge Computing
(HotEdge 18).

[15] S. S. Ogden and T. Guo. Modipick: Sla-aware accuracy optimization
for cloud-based inference. arXiv:1909.02053, 2019.

[16] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke. Tensorflow-serving: Flexible,
high-performance ML serving, 2017.

[17] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays. Federated Learn-
ing for Emoji Prediction in a Mobile Keyboard. arXiv:1906.04329.

[18] A. van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based
music recommendation. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 2643–2651. Curran Associates,
Inc., 2013.

[19] P. M. VanNostrand, I. Kyriazis, M. Cheng, T. Guo, and R. J. Walls. Con-
fidential Deep Learning: Executing Proprietary Models on Untrusted
Devices. arXiv:1908.10730, 2019.

[20] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. John-
son, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s neural
machine translation system: Bridging the gap between human and
machine translation. arXiv:1609.08144.

[21] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu. Deepcache: Principled cache
for mobile deep vision. In the 24th Annual International Conference on
Mobile Computing and Networking (MobiCom ’18).

[22] J. Yang, R. Karimi, T. Sæmundsson, A. Wildani, and Y. Vigfusson.
Mithril: Mining sporadic associations for cache prefetching. In the
2017 Symposium on Cloud Computing (SoCC ’17).

315

https://www.tensorflow.org/lite/models
https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
https://machinelearning.apple.com/2017/08/06/siri-voices.html
https://machinelearning.apple.com/2017/08/06/siri-voices.html

	Abstract
	1 Introduction
	2 Caching Deep Learning Models at the Edge
	3 Summary

