
ModiPick: SLA-aware Accuracy Optimization For Mobile Deep
Inference

Samuel S. Ogden
ssogden@wpi.edu

Worcester Polytechnic Institute
100 Institute Ave.

Worcester, Massachuse�s 01609

Tian Guo
tian@wpi.edu

Worcester Polytechnic Institute
100 Institute Ave.

Worcester, Massachuse�s 01609

ABSTRACT
Mobile applications are increasingly leveraging complex deep learn-
ing models to deliver features, e.g., image recognition, that require
high prediction accuracy. Such models can be both computation
and memory-intensive, even for newer mobile devices, and are
therefore commonly hosted in powerful remote servers. However,
current cloud-based inference services employ static model selec-
tion approach that can be suboptimal for satisfying application
SLAs (service level agreements), as they fail to account for inherent
dynamic mobile environment.

We introduce a cloud-based technique called ModiPick that dy-
namically selects the most appropriate model for each inference
request, and adapts its selection to match di�erent SLAs and execu-
tion time budgets that are caused by variable mobile environments.
�e key idea of ModiPick is to make inference speed and accuracy
trade-o�s at runtime with a pool of managed deep learning models.
As such, ModiPick masks unpredictable inference time budgets
and therefore meets SLA targets, while improving accuracy within
mobile network constraints. We evaluate ModiPick through experi-
ments based on prototype systems and through simulations. We
show that ModiPick achieves comparable inference accuracy to a
greedy approach while improving SLA adherence by up to 88.5%.

KEYWORDS
Mobile application, DNN inference service, DNN model manage-
ment, performance optimization

1 INTRODUCTION
Today mobile applications are increasingly powered by deep learn-
ing models, providing rich features such as real-time language
translation, image recognition and personal assistants [11, 41, 42].
Unlike traditional mobile applications that rely on much simpler
models [34, 40], those new features o�en require access to “deeper”
models [24, 46] that can take unreasonable amount of execution
time on mobile hardware [4, 22, 31] (see Figure 3). Currently, to
use deep inference, mobile applications can either resort to model
optimization techniques [9, 12, 13, 25–27, 33, 47] that o�en sacri-
�ce accuracy for improved on-device inference time or leverage
cloud-based inference services [14, 16, 32]. As the need to support
more complex application scenarios emerge, various cloud-based
serving platforms have become a preferable option for achieving
high inference accuracy.

Although these proposed general platforms address some fun-
damental issues in the model post-training phase, they are less
e�ective in serving mobile inference requests. �e crux of this inef-
�ciency stems from not considering the challenges that are unique

0 200 400 600 800 1000 1200 1400

Network Transfer Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
ia

l
C

D
F

Campus WiFi
Home WiFi
Public WiFi
LTE
LTE Hotspot

Figure 1: Impact of dynamic mobile network condition on
end-to-endmobile inference latency. We empirically measured
the cloud-based mobile deep inference time using our Android-
based benchmark application. �e network transfer time shown
here is obtained by subtracting on-server inference execution from
the end-to-end inference response time. Our results reveal two key
insights: (1) di�erent network types show signi�cantly di�erent
degrees of network latency; (2) even using the same network type,
network latency can vary signi�cantly.

to supporting deep inference requests for mobile applications. First,
mobile devices are in a much more dynamic network environment
than traditional devices, ranging from high-latency cellular connec-
tions to high-speed WiFi connections. As shown in Figure 1, the
median network latency when using LTE hotspot can be twice as
much as using campus WiFi. �erefore, mobile devices can take
varying amount of time to transfer input data needed for inference
tasks. Second, these deep learning mobile applications are o�en
user facing and thus have stricter SLA requirements. User-facing
foreground applications, for example generating labels for images
or translating captions, have more stringent time requirements
than applications running in the background, such as re-processing
images in gallery application. Consequently, it is important to
be aware of and distinguish latency-sensitive mobile inference re-
quests. �ird, even for the same type of inference requests, mobile
devices tend to request inference on raw data of di�erent resolu-
tions due to inherently di�erent mobile sensor capacities, such as
di�erent image sensors [3, 5]. �erefore, input data preprocessing
can take vastly di�erent amounts of time which can be further
exacerbated by heterogeneous mobile processing capacity [22].

ar
X

iv
:1

90
9.

02
05

3v
1

 [
cs

.P
F]

 4
 S

ep
 2

01
9

60 65 70 75 80

Top-1 Accuracy (%)

0

5

10

15

20

G
F

L
O

P
s

Figure 2: Model accuracy and inference speed trade-o�s of
state-of-the-art CNNs (convolutional neural networks) [1].
We approximate model inference speed with GFLOPs (giga �oating
point operations) and model size (circle size) assuming the same
inference hardware. As shown, even for models with similar in-
ference accuracy (around 78%), their inference time can be vastly
di�erent. ModiPick leverages these models and makes accuracy
and inference time trade-o�s at runtime.

To address the speci�c needs of mobile deep inference, we argue
that systems need to take into consideration of mobile deep infer-
ence characteristics and automatically adapt inference execution
to each inference request’s accuracy and speed requirements. To
combat the uncertainty in estimating both the inference network
time and execution time in cloud-based inference, systems need
to be able to e�ectively explore and exploit a set of models with
minimal instrumentation overhead.

Towards these two design goals, we propose ModiPick, an algo-
rithm for cloud-based inference that can adapt to network condi-
tions by choosing the deep learning model with the highest accuracy
that will return results to the user within a request’s SLA. ModiPick
is designed to optimize mobile inference accuracy based on the
constraints of a given SLA, the time to transfer input data across
the network, and the available models.

More concretely, we enable a trade-o� between inference speed
and accuracy by, for each mobile inference request, choosing from
a set of models that represent di�erent execution time and accuracy
tradeo�s, such as those shown in Figure 2. �e key idea of ModiPick
is to match the time budget of an inference request to the deep
learning model that is most likely to �nish within the prede�ned
SLA target and produce quality inference responses. We do this by
�rst calculating an inference time budget for each request and then
selecting a model from a subset of eligible models that are fast and
reliable enough to meet this time budget.

Our hypothesis is that ModiPick’s mobile-centric approach can
signi�cantly improve the accuracy of mobile inference requests
while avoiding SLA violations. In evaluating our hypothesis, we
make the following contributions.

• Performance characterization of mobile deep infer-
ence. We implement an image recognition Android ap-
plication and a prototype serving system that manages a
pool of convolutional neural network (CNN) models. Our
measurements show that sending inference requests to

our cloud-based serving platform can be up to 3X slower
in di�erent mobile network conditions. In addition, we
show that executing inference requests on the same model
and cloud server combination incurs non-negligible time
variation.

• SLA-aware model selection policies. ModiPick uses a
probabilistic-based approach when selecting the most suit-
able model for inference tasks based on user-de�ned SLA
target. �e key intuition behind this explore and exploit
algorithm is to account for the varying inference time bud-
get caused by dynamic mobile environments and cloud
inference time requirements.

• Implementation and evaluation. We implement ModiPick
as a python module that can be used by, and easily be inte-
grated into existing deep learning serving systems [16, 32].
We conduct both microbenchmarks and end-to-end eval-
uations that demonstrate ModiPick’s ability to smoothly
trade-o� between inference accuracy and latency. Together
with our extensive simulations that are seeded by empirical
measurements, our results show that ModiPick achieves
similar inference accuracy and increases SLA a�ainment
by up to 88.5% over greedy algorithms.

2 MOTIVATION AND PROBLEM STATEMENT
Deep neural networks (DNNs) have become increasingly popular
for embedding novel features into mobile applications. In partic-
ular, convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have demonstrated high inference accuracy in
handling image, video and audio data [20, 28, 46]. State-of-the-art
DNN models, with their accuracy-driven design, can contain mil-
lions of parameters and hundreds of layers, and therefore can be
both computation and memory-intensive [24, 38, 46].

Mobile deep inference is de�ned as mobile applications use deep
learning models to generate inference response for using in pro-
viding novel application features such as image recognition and
speech recognition. Depending on where the deep learning model
is executed, mobile deep inference can happen either directly on-
device or in cloud-based servers [22]. In this section, we �rst explain
how on-device (§2.1) and cloud-based inference (§2.2) are used and
discuss their pros and cons respectively. We then de�ne the runtime
model selection problem ModiPick solves in §2.3.

2.1 On-device inference and its limitations
A number of deep learning frameworks, such as Ca�e2 [9] and Ten-
sorFlow Lite [13], have started to support executing deep learning
models directly on mobile devices. Speci�cally, these frameworks
perform inference tasks using exported models that have trained
on powerful servers. Even with optimizations in these so�ware li-
braries, on-device inference can still be orders of magnitude slower
than running inference on powerful servers (see Figure 3). �ese
large performance gaps are mainly due to constraints on mobile
hardware, e.g., the lack of GPU or insu�cient memory. �e infer-
ence ine�ciency is exacerbated when an application needs to load
multiple models, such as chaining the execution of an OCR (optical
character recognition) model and a text translation model [8, 10], or

2

MobileNet
0.25

150

175

200

225

250

MobileNet
1.0

400

450

500

550

600

InceptionV3

2000

4000

6000

8000

InceptionV4

4000

6000

8000

10000

MobileNet
0.25

4

6

8

10

MobileNet
1.0

46.0

46.5

47.0

InceptionV3

260

262

264

266

268

InceptionV4

540

545

550

555

MobileNet
0.25

2.2

2.4

2.6

2.8

3.0

MobileNet
1.0

5.2

5.4

5.6

5.8

6.0

InceptionV3

30.8

31.0

31.2

31.4

31.6

31.8

InceptionV4

59.0

59.5

60.0

60.5

61.0

MotoX c5.large p2.xlarge

Figure 3: Comparison of inference latency of on-device and cloud-based inference with four state-of-the-art CNN models.
Although mobile-optimized model MobileNet 0.25 only takes an average of 150ms to run on a mobile phone, it takes up to 26X longer to run
a twice accurate InceptionV4 model. In addition, the InceptionV4 runs in just over 59ms on the p2.xlarge GPU-accelerated server, over
2.5X faster than the MobileNet 0.25 on the MotoX. Our measurement identi�es the need for cloud-based inference for mobile applications
that bene�t from highly accurate inference results and demonstrates the potential of cloud-based inference for enabling inference latency
and accuracy trade-o�s.

needs higher accuracy models. To ensure mobile inference execu-
tion �nishing in a reasonable time, mobile-speci�c models [25, 46]
o�en involves sacri�cing inference accuracy and thus excludes
complex application scenarios.

Summary: Even though on-device inference is a plausible choice for
simple tasks and newer mobile devices, it is less suitable for complex
tasks or older mobile devices.

2.2 Cloud-based inference and its potential
Instead of on-device execution, mobile applications can send their
inference requests to cloud-hosted models. A number of model
serving systems [16, 19, 32] have been proposed to manage di�er-
ent model versions that are used for executing inferences. �ese
systems o�en focus on maximizing inference throughput by batch-
ing incoming requests, which may increase waiting time of some
requests and consequently have negative impacts on end-to-end
inference requests.

To utilize such systems as model backends, mobile developers
need to manually specify the exact model to use through exposed
API endpoints. �is manual model selection fails to consider the
impact of dynamic mobile network conditions, which can take up a
signi�cant portion of end-to-end inference time [31, 35]. Such static
development-time e�orts can lead to mobile application develop-
ers either conservatively pick a faster model that delivers lower
accuracy or risk SLA violations with a complex model that can take
compound unexpectedly long network delay with a long inference
time.

Summary: Cloud-based inference has the potential to support a
plethora of application scenarios, simple or complex, and heteroge-
neous mobile devices, old or new. However, current mobile-agnostic
serving platforms fall short in automatically adapting inference accu-
racy to varying time requirements of mobile inference requests.

2.3 Problem Statement
ModiPick seeks to execute mobile inference requests using the most
suitable cloud-based model to maximize inference accuracy within
SLA target. �e key idea of ModiPick is to mask the variability
of dynamic mobile inference requirements by managing a pool of

deep learning models that expose di�erent accuracies and execution
times. Speci�cally, these models (see Table 2 for an example distri-
bution) provide ModiPick the �exibility to adapt to the dynamic
network and runtime environments experienced by each mobile
inference request.

In this work, we focus on answering the following two research
questions: (i) how to handle dynamic mobile network by execut-
ing the inference task with the most suitable model that delivers
optimized accuracy as SLA is allowed? (ii) How to combat the
unpredictability of cloud-based inference executions by judiciously
exploiting potential model candidates?
System model. We assume that mobile applications are packaged
with an on-device model, but by default use the cloud-based in-
ference APIs exposed by ModiPick. For simplicity, we assume all
inference requests are for image recognition tasks but ModiPick
can be easily extended to other deep learning tasks by providing
additional inference APIs.

When sending an inference request, we assume that each mobile
application include the request timestampTstar t (all math symbols
are de�ned in Table 1), and the required SLATsla in addition to the
inference input data. We further assume that ModiPick has access
to a wide selection of modelsM = {m1, · · · ,mk } for the image
recognition task and each model mi exposes a di�erent level of ac-
curacy A(mi) and inference timeT (mi). Note, the models used are
pretrained models that can be obtained from online model reposito-
ries [2, 4] and derived using model optimization techniques [6, 44].

Here A(mi) is calculated by dividing the correctly predicted in-
ference requests by the total number of inference requests serviced
by model mi ; andT (mi) is de�ned as the time an inference server
takes to generate an inference response. Note thatT (mi) includes
both inference request wait time and execution time. In this paper,
we assume that inference servers are well-provisioned and focus on
making trade-o�s between inference accuracy and execution time.
�at said, the problem of model servers provision is orthogonal to,
but can be bene�cial to our work.

3

3 MODIPICK DESIGN
�is section describes how ModiPick addresses mobile-speci�c key
challenges using an adaptive and automatic model selection algo-
rithm. We �rst motivate the need for maintaining a pool of cloud-
based deep learning models in Section 3.1, followed by explaining
how two baseline greedy algorithms fall short in Section 3.2. We
then describe ModiPick’s three-staged algorithm that automatically
maximizes inference accuracy given variable inference time bud-
gets and unpredictable cloud-based inference execution time in
Section 3.3.

3.1 �e need of cloud-based multi-models
hosting

In this paper, we consider mobile applications that provide novel
features, which are supported by computational intensive deep
learning models. �ese applications o�en have strict performance
requirements and can only tolerate minimal accuracy degradation.
As a result, despite recent device-speci�c model optimizations,
hosting these models in the cloud is still a preferable approach
for achieving scalability and consistentcy for heterogeneous mobile
hardware [15, 16, 32]. In essence, the need for cloud-based models
arise when these complex and accurate models still take very long
time to execute on mobile devices (see Figure 3). Moreover, having
access to multiple cloud-based models can be very bene�cial, as we
explain below and demonstrate empirically in Section 4.2.

�e key reasons that such deep learning powered mobile applica-
tions will bene�t from having access to multiple model performance
pro�les at runtime lay at (1) the variable time budget for executing
inference requests, (2) and the design goal of satisfying end-to-
end response time SLA while optimizing inference accuracy. Here,
model performance pro�le refers to inference execution time when
running a model on a particular cloud server. As shown in Figure 3,
the inference time of a speci�c model vary signi�cantly depends
on cloud server types. In essence, we can dynamically select which
model and sever combination to use given the inference time bud-
get. To cater to applications with di�erent accuracy requirements,
maintaining a pool of deep learning models that expose di�erent
accuracy and computation complexity can provide greater �exibil-
ity.

When a mobile application sends an inference request to a cloud-
based model, the end-to-end inference time is impacted by input
transfer time, input preprocessing time, and inference execution
time. For image recognition tasks, input preprocessing time is o�en
negligible even between recent mobile hardware and much older
devices [22]. However, as explained in Section 1, the time to transfer
input can vary signi�cantly depending on the input data size and
network connection. As a result, cloud-based model servers have to
adhere to a variable time budget in order to avoid SLA violations.

However, current serving platforms o�en statically choose a
model with an acceptable accuracy that can �nishes its inference
execution within an upper bound. �is bound can be calculated by
taking into account the worst-case scenarios of input transfer and
preprocessing time. Consequently, such single model hosting is too
conservative and ignores opportunities to achieve higher inference
accuracy for scenarios where a fast network connection allows for
a higher execution time budget. In summary, relying on a single

Symbol Meaning
Tsla Response time SLA.
Tstar t Start time of mobile inference requests.
Tthreshold Con�dence threshold of inference performance.
Tbudдet �e remaining time for inference execution.
Tnw Network time of inference request and response.
Tinput Time to send inference request.
Toutput Time to send inference response.
TD Expected on-device inference time.
TU �e hard time limit for model exploration.
TL �e so� time limit for model exploration.
TE �e exploration range.
TR �e range for model exploration.
K �e total number of models.
ME �e exploration set of models.
µ(m) Average inference time of modelm.
σ (m) Standard deviation of inference time of modelm.
Pr (m) Probability of modelm for performing inference.
A(m) Accuracy of modelm.
T (m) Inference time of modelm.
U (m) Utility of modelm.

Table 1: Summary of symbols and their meanings. Symbols
are categorized as inference-related (shaded) and model-related
ones. For inference-related symbols, all but Tsla symbols are in
regarding to a particular inference request Rj from a speci�c mo-
bile device Di . But for simplicity, we omit the representation of
inference requests and devices throughout the paper.

model to handle mobile deep inference is not optimal as there are
no “one-size-�ts-all” models.

Instead, we argue the need for maintaining a pool of deep learn-
ing models that expose di�erent accuracy and speed tradeo�s, as
shown in Figure 2. Our proposed cloud-based multi-model in-
ference service has two major advantages. First, it provides the
�exibility for ModiPick to automatically adapt its model selection
to varying inference execution budget, for each incoming inference
request. �erefore, ModiPick is able to strive for higher inference
accuracy within prede�ned SLA target. Second, models with increas-
ing complexities can satisfy a given execution budget by running
on more powerful servers. �erefore, ModiPick can deliver the
same inference response with reduced cloud cost. In this paper, we
focus on the SLA-aware accuracy-optimization that are enabled
by multi-model hosting and leave the cost-optimization as future
work.

3.2 Baseline greedy approaches
Provided the feasibility and bene�ts of hosting multiple deep learn-
ing models for a given type of inference tasks, the next step is
to determine which model to use for any given inference request.
ModiPick’s goal is to select the most appropriate model by consid-
ering both dynamic inference budget and the cloud-based infer-
ence time variation. In this section, we �rst present two greedy

4

approaches (used as baselines in Section 4) and identify their respec-
tive limitations. In this section 3.3, we introduce our probability-
based model selection that aims to achieve high inference accuracy
without violating SLA.

3.2.1 Static greedy model selection. One approach to selecting a
model is to study the accuracy and latency trade-o�s of all models
at development time. �ese models can then be sorted in descending
order of accuracy, and the model with the highest accuracy that has
a response time less than the prede�ned SLA Tsla will be selected.
�at is, we pick the �rst model Mk with its average inference
execution µ(Mk) ≤ Tsla . While this approach is straightforward, it
requires mobile application developers to specify the selected model
during development time and is therefore inherently unable to
cope with the dynamic environment experienced by mobile devices.
Moreover, ignoring the variability of mobile network connections
can potentially lead to a large number of SLA violations that are
unacceptable in user-facing mobile applications.

3.2.2 Dynamic greedy model selection. An alternative, but also
naı̈ve, approach is to decide which model to use for executing in-
ference at runtime. In order to make the decision without violating
application-speci�ed SLA Tsla , this approach estimates the remain-
ing time Tbudдet that an inference request has to �nish execution
for each request. �is time budget is calculated by taking the di�er-
ence between Tsla and the network transfer time Tnw . Tnw can be
estimated conservatively with 2 ∗Tinput where Tinput denotes the
time taken to send input data from the mobile device to the infer-
ence server. In most cases, we could expectTinput ≥ Toutput given
inference requests, e.g., images, are o�en larger than inference
responses. To summarize, Tbudдet can be calculated as:

Tbudдet = Tsla − 2 ∗Tinput (1)

Given the time budget, this approach sorts the models in de-
scending order of prediction accuracy and picks the �rst model Mk
with its average inference execution µ(Mk) ≤ Tbudдet . Note, the
key di�erences between this approach and the previously described
static greedy is when the model selection is made and how the model
is selected.

Although this satis�es our goal of optimizing inference accuracy,
this dynamic approach is not resilient to scenarios when we do
not have accurate performance estimates for hosted models. Such
situations can arise when a model is �rst deployed to the infer-
ence server or when inference execution time vary vastly due to
overloaded servers [43] or performance interference of co-located
tenants, as demonstrated in Figure 3.

Given the uncertainty of mobile network and cloud performance,
we aim to maximize the prediction accuracy by balancing the op-
portunities to exploiting our current knowledges and exploring
other potentially good candidate models [45]. Without exploration,
high-accuracy models that happen to incur abnormally high infer-
ence time can be omi�ed from any future selections. We next depict
our accuracy-driven probabilistic model selection that is centered
around this key insight.

M

<latexit sha1_base64="jJzBYlPvKEZhc1g0c8GyquyYC+M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjw4rFi0xbaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsbm1vbObmmvvH9weHRcOTltmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ3dzvPHFtRKJaOE15ENOREpFgFK302Br4g0rVrbkLkHXiFaQKBZqDyld/mLAs5gqZpMb0PDfFIKcaBZN8Vu5nhqeUTeiI9yxVNOYmyBenzsilVYYkSrQthWSh/p7IaWzMNA5tZ0xxbFa9ufif18swug1yodIMuWLLRVEmCSZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2xC81ZfXSbte89ya93BdbdSLOEpwDhdwBR7cQAPuoQk+MBjBM7zCmyOdF+fd+Vi2bjjFzBn8gfP5AwaYjZA=</latexit>

TL
<latexit sha1_base64="09eZrsZ/hTpVz+7IFqrWRhnw9lM=">AAAB6nicbVDLSgNBEOz1EWN8RT16GQyCp7Cbix4DXjx4SDAvSJYwO5lNhszOLjO9QljyCV48KOLVD/EbvIk/4+Rx0MSChqKqm+6uIJHCoOt+ORubW9u5nfxuYW//4PCoeHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4FrI2LVwEnC/YgOlQgFo2il+0b/rl8suWV3DrJOvCUpVXP17w8AqPWLn71BzNKIK2SSGtP13AT9jGoUTPJpoZcanlA2pkPetVTRiBs/m586JRdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfVm4n9eN8Xw2s+ESlLkii0WhakkGJPZ32QgNGcoJ5ZQpoW9lbAR1ZShTadgQ/BWX14nrUrZc8te3aZRgQXycAbncAkeXEEVbqEGTWAwhEd4hhdHOk/Oq/O2aN1wljOn8AfO+w/tkY+1</latexit><latexit sha1_base64="Od+EIMZgqW1h39LicPybxgc4QDo=">AAAB6nicbVA9SwNBEJ2LGmP8ilraLAbBKtyl0TJgY2GRYL4gOcLeZi9Zsrd77O4J4chPsNAiIraC/8XSTvwzbj4KTXww8Hhvhpl5QcyZNq775WQ2Nrey27md/O7e/sFh4ei4qWWiCG0QyaVqB1hTzgRtGGY4bceK4ijgtBWMrmd+654qzaSom3FM/QgPBAsZwcZKd/Xeba9QdEvuHGideEtSrGRr3x/Tx/dqr/DZ7UuSRFQYwrHWHc+NjZ9iZRjhdJLvJprGmIzwgHYsFTii2k/np07QuVX6KJTKljBorv6eSHGk9TgKbGeEzVCvejPxP6+TmPDKT5mIE0MFWSwKE46MRLO/UZ8pSgwfW4KJYvZWRIZYYWJsOnkbgrf68jpplkueW/JqNo0yLJCDUziDC/DgEipwA1VoAIEBPMAUnh3uPDkvzuuiNeMsZ07gD5y3H2RRkY0=</latexit><latexit sha1_base64="Od+EIMZgqW1h39LicPybxgc4QDo=">AAAB6nicbVA9SwNBEJ2LGmP8ilraLAbBKtyl0TJgY2GRYL4gOcLeZi9Zsrd77O4J4chPsNAiIraC/8XSTvwzbj4KTXww8Hhvhpl5QcyZNq775WQ2Nrey27md/O7e/sFh4ei4qWWiCG0QyaVqB1hTzgRtGGY4bceK4ijgtBWMrmd+654qzaSom3FM/QgPBAsZwcZKd/Xeba9QdEvuHGideEtSrGRr3x/Tx/dqr/DZ7UuSRFQYwrHWHc+NjZ9iZRjhdJLvJprGmIzwgHYsFTii2k/np07QuVX6KJTKljBorv6eSHGk9TgKbGeEzVCvejPxP6+TmPDKT5mIE0MFWSwKE46MRLO/UZ8pSgwfW4KJYvZWRIZYYWJsOnkbgrf68jpplkueW/JqNo0yLJCDUziDC/DgEipwA1VoAIEBPMAUnh3uPDkvzuuiNeMsZ07gD5y3H2RRkY0=</latexit><latexit sha1_base64="AD3am+I6rEWXuwJoDBcTGQQ1DjU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe7SmDJgY2ERMV+QHGFvs5cs2ds7dueEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFyRSGHTdb6ewtb2zu1fcLx0cHh2flE/POiZONeNtFstY9wJquBSKt1Gg5L1EcxoFkneD6e3C7z5xbUSsWjhLuB/RsRKhYBSt9Nga3g/LFbfqLkE2iZeTCuRoDstfg1HM0ogrZJIa0/fcBP2MahRM8nlpkBqeUDalY963VNGIGz9bnjonV1YZkTDWthSSpfp7IqORMbMosJ0RxYlZ9xbif14/xbDuZ0IlKXLFVovCVBKMyeJvMhKaM5QzSyjTwt5K2IRqytCmU7IheOsvb5JOreq5Ve/BrTRqeRxFuIBLuAYPbqABd9CENjAYwzO8wpsjnRfn3flYtRacfOYc/sD5/AH3pY2D</latexit>

µ(m3)
<latexit sha1_base64="XAx9yg94oWL9XgESRyjZpbiV9+o=">AAAB8HicdVBNS0JBFL3Pvsy+zJZthiTQzWOemroU2rQ0yI9QkXnjqIMz7z1m5gUi/oo2LYpo289p179pnhZU1IELh3Pu5d57/EhwbTB+d1Ibm1vbO+ndzN7+weFR9jjX1mGsKGvRUISq6xPNBA9Yy3AjWDdSjEhfsI4/u0z8zh1TmofBjZlHbCDJJOBjTomx0m1fxgU5LBfRMJvHbhWXyxcVhF0PY69eS0i1UqmVkefiFfKNXL8IFs1h9q0/CmksWWCoIFr3PByZwYIow6lgy0w/1iwidEYmrGdpQCTTg8Xq4CU6t8oIjUNlKzBopX6fWBCp9Vz6tlMSM9W/vUT8y+vFZlwfLHgQxYYFdL1oHAtkQpR8j0ZcMWrE3BJCFbe3IjolilBjM8rYEL4+Rf+Tdsnm43rXNo0SrJGGUziDAnhQgwZcQRNaQEHCPTzCk6OcB+fZeVm3ppzPmRP4Aef1A+xYkIQ=</latexit><latexit sha1_base64="wwr2RxPaR5wXxMxflP7xi67fa18=">AAAB8HicdVDLTgIxFO3gC/GFuHTTSExwQzoMAksSNy4xkYdhCOmUAg1tZ9J2TAjhG1y4caExbv0MP8GdH+LeDmiiRk9yk5Nz7s299wQRZ9og9OakVlbX1jfSm5mt7Z3dvex+rqXDWBHaJCEPVSfAmnImadMww2knUhSLgNN2MDlL/PY1VZqF8tJMI9oTeCTZkBFsrHTli7gg+t4J7GfzqFhBnndahqjoIuTWqgmplMtVD7pFtEC+nvML7y83fqOfffUHIYkFlYZwrHXXRZHpzbAyjHA6z/ixphEmEzyiXUslFlT3ZouD5/DYKgM4DJUtaeBC/T4xw0LrqQhsp8BmrH97ifiX143NsNabMRnFhkqyXDSMOTQhTL6HA6YoMXxqCSaK2VshGWOFibEZZWwIX5/C/0mrZPMpuhc2jRJYIg0OwREoABdUQR2cgwZoAgIEuAX34MFRzp3z6DwtW1PO58wB+AHn+QNx95Ml</latexit><latexit sha1_base64="wwr2RxPaR5wXxMxflP7xi67fa18=">AAAB8HicdVDLTgIxFO3gC/GFuHTTSExwQzoMAksSNy4xkYdhCOmUAg1tZ9J2TAjhG1y4caExbv0MP8GdH+LeDmiiRk9yk5Nz7s299wQRZ9og9OakVlbX1jfSm5mt7Z3dvex+rqXDWBHaJCEPVSfAmnImadMww2knUhSLgNN2MDlL/PY1VZqF8tJMI9oTeCTZkBFsrHTli7gg+t4J7GfzqFhBnndahqjoIuTWqgmplMtVD7pFtEC+nvML7y83fqOfffUHIYkFlYZwrHXXRZHpzbAyjHA6z/ixphEmEzyiXUslFlT3ZouD5/DYKgM4DJUtaeBC/T4xw0LrqQhsp8BmrH97ifiX143NsNabMRnFhkqyXDSMOTQhTL6HA6YoMXxqCSaK2VshGWOFibEZZWwIX5/C/0mrZPMpuhc2jRJYIg0OwREoABdUQR2cgwZoAgIEuAX34MFRzp3z6DwtW1PO58wB+AHn+QNx95Ml</latexit><latexit sha1_base64="181Dq1SDJ/AxllW0AlhIoaNXn1g=">AAAB8HicdVDLSgMxFM34rPVVdekmWIS6GTKd2nZZcOOygn1IO5RMmmlDk8yQZIQy9CvcuFDErZ/jzr8xfQgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dxOfndv/+CwcHTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSecXM39zj1VmsXy1kwTGgg8kixiBBsr3fVFWhID/wIOCkXkVpHvX1Ygcj2EvHptTqqVSs2HnosWKIIVmoPCe38Yk1RQaQjHWvc8lJggw8owwuks3081TTCZ4BHtWSqxoDrIFgfP4LlVhjCKlS1p4EL9PpFhofVUhLZTYDPWv725+JfXS01UDzImk9RQSZaLopRDE8P593DIFCWGTy3BRDF7KyRjrDAxNqO8DeHrU/g/aZdtPq53g4qN8iqOHDgFZ6AEPFADDXANmqAFCBDgATyBZ0c5j86L87psXXNWMyfgB5y3T8lKj60=</latexit>

µ(m2)
<latexit sha1_base64="mbJ7c0Pm5G08pRVo15dsh41uCrQ=">AAAB8HicbVDJSgNBEK1xjXGL8eilMQjJJczkoseAF48RzCKZIfR0epIm3T1DL0IY8hVePCji1c/x5t/YWQ6a+KDg8V4VVfXijDNtfP/b29re2d3bLxwUD4+OT05LZ+WOTq0itE1SnqpejDXlTNK2YYbTXqYoFjGn3XhyO/e7T1RplsoHM81oJPBIsoQRbJz0GApbFYNGDQ1KFb/uL4A2SbAilWY5rIFDa1D6CocpsYJKQzjWuh/4mYlyrAwjnM6KodU0w2SCR7TvqMSC6ihfHDxDV04ZoiRVrqRBC/X3RI6F1lMRu06BzVive3PxP69vTXIT5Uxm1lBJlosSy5FJ0fx7NGSKEsOnjmCimLsVkTFWmBiXUdGFEKy/vEk6jXrg14N7l0YDlijABVxCFQK4hibcQQvaQEDAM7zCm6e8F+/d+1i2bnmrmXP4A+/zB4/tkEQ=</latexit><latexit sha1_base64="HydBIjQqN/0wTD+ZYOC3ZZYP+Jw=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2Ifu0C9Ytlt+rOgdaJtyTlRsmvfH88+M1+8dMfxCQVVBrCsdY9z01MkGFlGOF0WvBTTRNMxnhIe5ZKLKgOsvnBU3RulQGKYmVLGjRXf09kWGg9EaHtFNiM9Ko3E//zeqmJLoOMySQ1VJLFoijlyMRo9j0aMEWJ4RNLMFHM3orICCtMjM2oYEPwVl9eJ+1a1XOr3o1NowYL5OEUzqACHtShAdfQhBYQEPAIz/DiKOfJeXXeFq05ZzlzAn/gvP8AFYyS5Q==</latexit><latexit sha1_base64="HydBIjQqN/0wTD+ZYOC3ZZYP+Jw=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2Ifu0C9Ytlt+rOgdaJtyTlRsmvfH88+M1+8dMfxCQVVBrCsdY9z01MkGFlGOF0WvBTTRNMxnhIe5ZKLKgOsvnBU3RulQGKYmVLGjRXf09kWGg9EaHtFNiM9Ko3E//zeqmJLoOMySQ1VJLFoijlyMRo9j0aMEWJ4RNLMFHM3orICCtMjM2oYEPwVl9eJ+1a1XOr3o1NowYL5OEUzqACHtShAdfQhBYQEPAIz/DiKOfJeXXeFq05ZzlzAn/gvP8AFYyS5Q==</latexit><latexit sha1_base64="D1KhZIgwDFNN/YUcHyjbjsHgBdc=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYhBiE+7SaBmwsYxgPiQ5wt5mkyzZ3Tt254Rw5FfYWChi68+x89+4Sa7QxAcDj/dmmJkXJVJY9P1vb2Nza3tnt7BX3D84PDounZy2bJwaxpsslrHpRNRyKTRvokDJO4nhVEWSt6PJ7dxvP3FjRawfcJrwUNGRFkPBKDrpsafSiurXrki/VPar/gJknQQ5KUOORr/01RvELFVcI5PU2m7gJxhm1KBgks+KvdTyhLIJHfGuo5oqbsNscfCMXDplQIaxcaWRLNTfExlV1k5V5DoVxbFd9ebif143xeFNmAmdpMg1Wy4appJgTObfk4EwnKGcOkKZEe5WwsbUUIYuo6ILIVh9eZ20atXArwb3frley+MowDlcQAUCuIY63EEDmsBAwTO8wptnvBfv3ftYtm54+cwZ/IH3+QNs349t</latexit>

µ(m1)
<latexit sha1_base64="P1vt/65xAoBCCE1nyxC7HUfsHaA=">AAAB8HicbVDJSgNBEK1xjXGL8eilMQjJJczkoseAF48RzCKZIfR0epIm3T1DL0IY8hVePCji1c/x5t/YWQ6a+KDg8V4VVfXijDNtfP/b29re2d3bLxwUD4+OT05LZ+WOTq0itE1SnqpejDXlTNK2YYbTXqYoFjGn3XhyO/e7T1RplsoHM81oJPBIsoQRbJz0GApbFYOghgalil/3F0CbJFiRSrMc1sChNSh9hcOUWEGlIRxr3Q/8zEQ5VoYRTmfF0GqaYTLBI9p3VGJBdZQvDp6hK6cMUZIqV9Kghfp7IsdC66mIXafAZqzXvbn4n9e3JrmJciYza6gky0WJ5cikaP49GjJFieFTRzBRzN2KyBgrTIzLqOhCCNZf3iSdRj3w68G9S6MBSxTgAi6hCgFcQxPuoAVtICDgGV7hzVPei/fufSxbt7zVzDn8gff5A45nkEM=</latexit><latexit sha1_base64="k1eb3rUf0yOp9Vim05GAO5RZjYg=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2IvneB+sWyW3XnQOvEW5Jyo+RXvj8e/Ga/+OkPYpIKKg3hWOue5yYmyLAyjHA6LfippgkmYzykPUslFlQH2fzgKTq3ygBFsbIlDZqrvycyLLSeiNB2CmxGetWbif95vdREl0HGZJIaKsliUZRyZGI0+x4NmKLE8IklmChmb0VkhBUmxmZUsCF4qy+vk3at6rlV78amUYMF8nAKZ1ABD+rQgGtoQgsICHiEZ3hxlPPkvDpvi9acs5w5gT9w3n8AFAaS5A==</latexit><latexit sha1_base64="k1eb3rUf0yOp9Vim05GAO5RZjYg=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2IvneB+sWyW3XnQOvEW5Jyo+RXvj8e/Ga/+OkPYpIKKg3hWOue5yYmyLAyjHA6LfippgkmYzykPUslFlQH2fzgKTq3ygBFsbIlDZqrvycyLLSeiNB2CmxGetWbif95vdREl0HGZJIaKsliUZRyZGI0+x4NmKLE8IklmChmb0VkhBUmxmZUsCF4qy+vk3at6rlV78amUYMF8nAKZ1ABD+rQgGtoQgsICHiEZ3hxlPPkvDpvi9acs5w5gT9w3n8AFAaS5A==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="UUR7NF1uELUFJH+ZBWuTDXttWDw=">AAAB5XicbZDNSgMxFIXv1L9aq1a3boJFqJsy40aXghuXFeyPtEPJpJk2NMkMyR2hDH0KNy4U8ZXc+TZm2i609UDg45yE3HuiVAqLvv/tlba2d3b3yvuVg+rh0XHtpNqxSWYYb7NEJqYXUcul0LyNAiXvpYZTFUnejaZ3Rd595saKRD/iLOWhomMtYsEoOutpoLKGGgaXZFir+01/IbIJwQrqsFJrWPsajBKWKa6RSWptP/BTDHNqUDDJ55VBZnlK2ZSOed+hporbMF8MPCcXzhmRODHuaCQL9/eLnCprZypyNxXFiV3PCvO/rJ9hfBPmQqcZcs2WH8WZJJiQYnsyEoYzlDMHlBnhZiVsQg1l6DqquBKC9ZU3oXPVDPxm8OBDGc7gHBoQwDXcwj20oA0MFLzAG7x7xnv1PpZ1lbxVb6fwR97nD0KHjiU=</latexit><latexit sha1_base64="UUR7NF1uELUFJH+ZBWuTDXttWDw=">AAAB5XicbZDNSgMxFIXv1L9aq1a3boJFqJsy40aXghuXFeyPtEPJpJk2NMkMyR2hDH0KNy4U8ZXc+TZm2i609UDg45yE3HuiVAqLvv/tlba2d3b3yvuVg+rh0XHtpNqxSWYYb7NEJqYXUcul0LyNAiXvpYZTFUnejaZ3Rd595saKRD/iLOWhomMtYsEoOutpoLKGGgaXZFir+01/IbIJwQrqsFJrWPsajBKWKa6RSWptP/BTDHNqUDDJ55VBZnlK2ZSOed+hporbMF8MPCcXzhmRODHuaCQL9/eLnCprZypyNxXFiV3PCvO/rJ9hfBPmQqcZcs2WH8WZJJiQYnsyEoYzlDMHlBnhZiVsQg1l6DqquBKC9ZU3oXPVDPxm8OBDGc7gHBoQwDXcwj20oA0MFLzAG7x7xnv1PpZ1lbxVb6fwR97nD0KHjiU=</latexit><latexit sha1_base64="NE9ZzNaycv+mN1f6H6kQgR5EBw0=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYhBiE+7SaBmwsYxgPiQ5wt5mkizZ3Tt294Rw5FfYWChi68+x89+4Sa7QxAcDj/dmmJkXJYIb6/vf3sbm1vbObmGvuH9weHRcOjltmTjVDJssFrHuRNSg4AqblluBnUQjlZHAdjS5nfvtJ9SGx+rBThMMJR0pPuSMWic99mRakf3givRLZb/qL0DWSZCTMuRo9EtfvUHMUonKMkGN6QZ+YsOMasuZwFmxlxpMKJvQEXYdVVSiCbPFwTNy6ZQBGcbalbJkof6eyKg0Zioj1ympHZtVby7+53VTO7wJM66S1KJiy0XDVBAbk/n3ZMA1MiumjlCmubuVsDHVlFmXUdGFEKy+vE5atWrgV4N7v1yv5XEU4BwuoAIBXEMd7qABTWAg4Rle4c3T3ov37n0sWze8fOYM/sD7/AFrWY9s</latexit><latexit sha1_base64="NE9ZzNaycv+mN1f6H6kQgR5EBw0=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYhBiE+7SaBmwsYxgPiQ5wt5mkizZ3Tt294Rw5FfYWChi68+x89+4Sa7QxAcDj/dmmJkXJYIb6/vf3sbm1vbObmGvuH9weHRcOjltmTjVDJssFrHuRNSg4AqblluBnUQjlZHAdjS5nfvtJ9SGx+rBThMMJR0pPuSMWic99mRakf3givRLZb/qL0DWSZCTMuRo9EtfvUHMUonKMkGN6QZ+YsOMasuZwFmxlxpMKJvQEXYdVVSiCbPFwTNy6ZQBGcbalbJkof6eyKg0Zioj1ympHZtVby7+53VTO7wJM66S1KJiy0XDVBAbk/n3ZMA1MiumjlCmubuVsDHVlFmXUdGFEKy+vE5atWrgV4N7v1yv5XEU4BwuoAIBXEMd7qABTWAg4Rle4c3T3ov37n0sWze8fOYM/sD7/AFrWY9s</latexit><latexit sha1_base64="k1eb3rUf0yOp9Vim05GAO5RZjYg=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2IvneB+sWyW3XnQOvEW5Jyo+RXvj8e/Ga/+OkPYpIKKg3hWOue5yYmyLAyjHA6LfippgkmYzykPUslFlQH2fzgKTq3ygBFsbIlDZqrvycyLLSeiNB2CmxGetWbif95vdREl0HGZJIaKsliUZRyZGI0+x4NmKLE8IklmChmb0VkhBUmxmZUsCF4qy+vk3at6rlV78amUYMF8nAKZ1ABD+rQgGtoQgsICHiEZ3hxlPPkvDpvi9acs5w5gT9w3n8AFAaS5A==</latexit><latexit sha1_base64="k1eb3rUf0yOp9Vim05GAO5RZjYg=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2IvneB+sWyW3XnQOvEW5Jyo+RXvj8e/Ga/+OkPYpIKKg3hWOue5yYmyLAyjHA6LfippgkmYzykPUslFlQH2fzgKTq3ygBFsbIlDZqrvycyLLSeiNB2CmxGetWbif95vdREl0HGZJIaKsliUZRyZGI0+x4NmKLE8IklmChmb0VkhBUmxmZUsCF4qy+vk3at6rlV78amUYMF8nAKZ1ABD+rQgGtoQgsICHiEZ3hxlPPkvDpvi9acs5w5gT9w3n8AFAaS5A==</latexit><latexit sha1_base64="k1eb3rUf0yOp9Vim05GAO5RZjYg=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2IvneB+sWyW3XnQOvEW5Jyo+RXvj8e/Ga/+OkPYpIKKg3hWOue5yYmyLAyjHA6LfippgkmYzykPUslFlQH2fzgKTq3ygBFsbIlDZqrvycyLLSeiNB2CmxGetWbif95vdREl0HGZJIaKsliUZRyZGI0+x4NmKLE8IklmChmb0VkhBUmxmZUsCF4qy+vk3at6rlV78amUYMF8nAKZ1ABD+rQgGtoQgsICHiEZ3hxlPPkvDpvi9acs5w5gT9w3n8AFAaS5A==</latexit><latexit sha1_base64="k1eb3rUf0yOp9Vim05GAO5RZjYg=">AAAB8HicbVC7SgNBFL0bXzG+YixtBoMQm7CbJpYBG8sI5iHZJcxOZpMhM7PLzKwQlnyDhY2FIrZ+hp9g54fYO3kUmnjgwuGce7n3njDhTBvX/XJyG5tb2zv53cLe/sHhUfG41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHF/N/M49VZrF8tZMEhoIPJQsYgQbK935Iq2IvneB+sWyW3XnQOvEW5Jyo+RXvj8e/Ga/+OkPYpIKKg3hWOue5yYmyLAyjHA6LfippgkmYzykPUslFlQH2fzgKTq3ygBFsbIlDZqrvycyLLSeiNB2CmxGetWbif95vdREl0HGZJIaKsliUZRyZGI0+x4NmKLE8IklmChmb0VkhBUmxmZUsCF4qy+vk3at6rlV78amUYMF8nAKZ1ABD+rQgGtoQgsICHiEZ3hxlPPkvDpvi9acs5w5gT9w3n8AFAaS5A==</latexit><latexit sha1_base64="NE9ZzNaycv+mN1f6H6kQgR5EBw0=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYhBiE+7SaBmwsYxgPiQ5wt5mkizZ3Tt294Rw5FfYWChi68+x89+4Sa7QxAcDj/dmmJkXJYIb6/vf3sbm1vbObmGvuH9weHRcOjltmTjVDJssFrHuRNSg4AqblluBnUQjlZHAdjS5nfvtJ9SGx+rBThMMJR0pPuSMWic99mRakf3givRLZb/qL0DWSZCTMuRo9EtfvUHMUonKMkGN6QZ+YsOMasuZwFmxlxpMKJvQEXYdVVSiCbPFwTNy6ZQBGcbalbJkof6eyKg0Zioj1ympHZtVby7+53VTO7wJM66S1KJiy0XDVBAbk/n3ZMA1MiumjlCmubuVsDHVlFmXUdGFEKy+vE5atWrgV4N7v1yv5XEU4BwuoAIBXEMd7qABTWAg4Rle4c3T3ov37n0sWze8fOYM/sD7/AFrWY9s</latexit>

µ(m2) + �(m2)

µ(m3) + �(m3)

µ(m1) + �(m1)

TL +
�
|TL � µ(m3)| + �(m3)

�

TL �
�
|TL � µ(m3)| + �(m3)

�

Figure 4: Walkthrough of our accuracy-driven model selec-
tion. ModiPick builds performance pro�le for each model by track-
ing average inference time µ(m) and standard deviation σ (m). As-
suming A(m3) > A(m1) > A(m2). To select the model for current
inference request, ModiPick will �rst selectsm3 as a base model, and
then calculate the exploration range TE , illustrated as the dashed
red line. ModiPick then constructs the exploration set ME that
containsm2 andm3. Last ,ModiPick chooses betweenm2 andm3
with a probability that takes into account of both model accuracy
and inference time variability.

3.3 Accuracy-driven dynamic model selection
Selecting the best deep learning model to execute mobile inference
requests can be challenging given the uncertainty of inference time
budgets and unpredictable cloud-based inference performance. �e
key insight of our accuracy-driven model selection algorithm is that
by explicitly considering such uncertainty, mobile inferences on
average increase inference speed and accuracy, without incurring
signi�cant performance pro�ling overhead.

In order to e�ectively explore all potentially high-accuracy mod-
els without violating SLA, we de�ne a threshold Tthreshold which
indicates how uncertain we are about the model performance pro-
�les. �e larger the value of Tthreshold , the more outdated the
inference performance pro�les. We then expand the notation of
time budgetTbudдet to a rangeTR = [TU ,TL], whereTU = Tbudдet
and TL = TU −Tthreshold (see Figure 4). Intuitively, TU represents
the maximum amount of time that ModiPick can use for generating
an inference response without risking SLA violations. We refer to
TU as the hard time limit. On the other hand, TL is referred to as
the so� time limit and provides ModiPick the �exibility to explore a
subset of high-accuracy models ME that exhibit di�erent execution
time {T (m)|∀m ∈ ME }.

Currently, Tthreshold is con�gured by ModiPick’s users, e.g.,
mobile application developer, as any values in the range of [0,TD],
where TD represents the expected on-device inference time for a
mobile application. However, ModiPick could also dynamically
adjust Tthreshold based on its con�dences of model performance
pro�les and will be explored as part of future work. We choose to
boundTthreshold this way because (1) we want to restrict the set of
the candidate models ME for exploring, (2) and it can mitigate the
undesirable behavior of starting on-device inference prematurely
when cloud-based inference can �nish without violating the SLA.

Next, we describe in detail how ModiPick utilizes both the model
performance pro�les and the time budget range TR to �rst pick a
base model, then construct a set of eligible models ME that is worth

5

exploring, and last probabilistically select the model for executing
the inference request. Our three-staged algorithm is designed to
gradually improve our estimation of model performance pro�les
without incurring additional pro�ling overhead. In addition, if we
are under time pressure to select models, our algorithm could be
stopped any time a�er the �rst stage and will still select a quality
model for performing the inference. In Figure 4 we provide an
example walkthrough of how ModiPick uses our accuracy-driven
model selection algorithm to select the best model probabilistically
in order to combat both the uncertainty of mobile network and the
inaccuracy of model performance in the cloud environment.

3.3.1 Stage one greedily picking the baseline model. In this
stage, ModiPick takes all the existing models and selects a base
modelmj based on the optimization formulation in Equation 2.

maximize
j

A(mj)

subject to µ(mj) + σ (mj) < TU , j = 1 . . .K .
µ(mj) − σ (mj) < TL , j = 1 . . .K .

(2)

�e high level idea is to select the most accurate model (objec-
tive function) that are likely to �nish execution within speci�ed
SLA target (�rst constraint) without triggering on-device inference
(second constraint). Given that cloud-based inference execution
might experience performance �uctuations that lead to a wider
inference execution distribution [36, 43], we take into account of
the standard deviation of model inference time and only select
models that satisfy both the so� time limit TL and the hard time
limit TU . By doing so, the selected models are of high accuracy
and are very likely to �nish execution within speci�ed SLA. Note
that when Tthreshold = 0 and all models have very tight inference
distribution, i.e., σ (mj) < ϵ,∀j where ϵ is small, the base model
selected by Equation (2) will be the same as the one by Equation (1).
In the example walkthrough in Figure 4, ModiPick will select model
m3 as the base model.

Due to the variability of the network, there will occasionally
be cases in which there are no available base models that satisfy
Equation (2). In these situations, ModiPick will choose the model
with the lowest average execution time µ(mj) in order to provide a
best-e�ort at SLA a�ainment.

3.3.2 Stage two optimistically constructing the eligible model
set. While Figure 3 shows that cloud-based inference has largely
stable execution times, there are cases in which these execution
times are orders of magnitude worse or may be unknown. For
instance, if a model happens to incur a very long inference time
due to sudden workload spikes on the co-located cloud tenants and
becomes ineligible based on Equation (2), a non-probabilistic system
would never pick this model for execution again even though it
might provide competitive accuracy. Another example is when
a new model is submi�ed to ModiPick and there is not su�cient
performance history related to it in order to make a determination
regarding expected inference time. In this case the model needs to
be run until an accuracy and performance pro�le can be generated.

To take the above described scenarios into consideration, we
leverage the basic idea of exploiting and exploration [45] and use the
base model as the anchor to construct a subset of eligible modelsME .
�is subset of models ME satisfy our performance goal regarding

accuracy and inference time, while providing the opportunity for
ModiPick to improve upon their performance pro�les.

�e high level idea is to �rst identify a reasonable range TE for
exploration and then only select models that satisfy µ(m) ∈ TE .
Intuitively, the wider the range, the more models are likely to fall
within the range. It is also obvious that we don’t want TU to fall
in such ranges because the increased chances of SLA violations.
�erefore, we construct the range TE by centering around the so�
time limit TL and expand the acceptable inference time values in
both directions with the distance between the base model and TL ,
augmented with the standard deviation of the base model inference
time. In addition, in order to minimize SLA violations, a modelm is
only chosen to put in the eligible model setME when µ(m)+σ (m) <
TU . In Figure 4, only modelm2 andm3 are marked as the members
of ME .

3.3.3 Stage three opportunistically selecting the inferencemodel.
Once ModiPick constructs the exploration set of models ME , its
ultimate goal is to select an inference modelmj that balances the ex-
ploration reward and the risk of SLA violations. To do so, we resort
to a probabilistic approach that assigns each model a probability
based on its utility and selects a model based on its corresponding
probability. For each model m, its probability Pr (m) represents
ModiPick’s understanding of model accuracy A(m) and the gaps of
violating either hard or so� time limit. To derive such probability
values, we �rst denote each model’s utility using U (m).

U (m) = A(m)
TU −

(
µ(m) + σ (m)

)
|TL − µ(m)|

(3)

In Equation 3, the numerator TU −
(
µ(m) + σ (m)

)
is always pos-

itive based on our algorithm stage two that selects the exploration
set of models ME . If a model m has a wide range of inference time
with larger standard deviation, we try to avoid assigning higher
probability for such models. Similarly, if a model m on average has
a larger absolute di�erence to the so� time limit TL , indicating a
lower con�dence of its performance pro�le, we want to avoid such
models as well. Overall, Equation 3 assigns a modelm with a higher
probability if the model has a higher accuracy, less likely to violate
the SLA and has an up-to-date and accurate inference execution
time. When picking the model for inference, ModiPick chooses
the model from the exploration set ME based on its normalized
probability Pr (m) in Equation 4.

Pr (m) = 1∑
n∈ME

U (n)U (m) (4)

Practical considerations: maintaining cloud-based model perfor-
mance pro�les. In order to maintain an accurate and update-to-date
model inference execution performance when using cloud servers,
we periodically re-evaluate the inference latency for each model,
especially for models that have not been selected recently. Unlike
popular models, these “cold” models could not leverage our runtime
measurement to e�ectively update the performance pro�les and
might be completely ruled out due to past poor performance. In
addition to obtaining performance pro�les , we also use an expo-
nential weighted moving average to calculate µ(m) and σ (m) for
each modelm to combat the performance �uctuations over time.

6

4 EXPERIMENTAL EVALUATION
Our evaluation goal is to quantify the e�ectiveness of ModiPick, in
dynamically selecting the most appropriate deep learning model to
optimize inference accuracy while avoiding SLA violations. We �rst
present an end-to-end experiment that demonstrates ModiPick’s
ability to improve inference accuracy by adapting its model se-
lection decisions as SLA target increases, in Section 4.1. We then
compare the performance of ModiPick and baseline greedy algo-
rithms (refer to Section 3.2) in terms of inference time and accuracy,
under di�erent SLA targets and mobile network conditions, in Sec-
tion 4.2 and Section 4.3. We conduct a comprehensive analysis
that a�ributes the performance gain to the ability to utilizing a
diverse set of models. Lastly, we investigate the bene�ts brought
by ModiPick’s accuracy-driven dynamic model selection algorithm
in Section 4.4. Our experiments are performed using our prototype
systems while our simulations allow us to study the bene�ts in a
scalable way, e.g., evaluating through a large number of mobile
inference requests with di�erent SLA and network condition com-
bination, as well as using a large number of deep learning models.
Prototype setup. Our prototype serving system runs on a well-
provisioned Amazon EC2 p2.xlarge server in the Virginia data
center and manages two deep learning models, MobileNetV1 0.25
and InceptionV3, through our ModiPick algorithm. �ese two
models are retrained on a smaller dataset and can deliver inference
accuracy of 88.9% and 94.3% respectively. We choose these two mod-
els to be�er demonstrate the trade-o�s that occur when using two
models.�e serving system is �rst warmed up by executing both
models using 1000 sample inference requests to allow ModiPick to
establish both models’ performance pro�les (see Figure 3). To send
mobile inference requests, we use our image recognition Android
application running on a reasonably powerful mobile device (Mo-
toX) via a campus WiFi. For each SLA target, our mobile application
sends 1000 inference requests to the serving system and measure
both the accuracy and the inference time.
Simulation setup. In our simulations, we leverage a range of
models, summarized in Table 2[4, 24–26, 29, 37, 38], that expose
di�erent accuracy and inference time trade-o�s. We empirically
measured the inference time distributions of models using an EC2
p2.xlarge GPU-accelerated server over 1,000 inference executions.
Model accuracies are obtained from the original publications unless
otherwise noted. We simulate the mobile network pro�les based
on empirical measurements of network time (average = 57.87ms,
std = 30.78ms) to send an inference image (330KB) from mobile
app to a Virginia-based EC2 server via our campus WiFi. For each
simulation, we generate 10,000 inference requests with a prede�ned
SLA target and record the model selected by ModiPick (and baseline
algorithms) and relevant performance metrics. We repeat each sim-
ulation for di�erent SLA target and network pro�les combination.

4.1 Prototype evaluation
We �rst demonstrate ModiPick’s overall e�ectiveness with an end-
to-end experiment using our prototype serving system and an
Android application running on MotoX. �e mobile device is con-
nected to our campus WiFi which has an average network time of
63ms over the course of the test. For each mobile inference request,
the image recognition mobile app will �rst preprocess the image (to

Model Name Top-1 Accuracy (%) Inference Avg. (ms) Inference Std. (ms)
SqueezeNet 49.0 4.91 0.06
MobileNetV1 0.25 49.7 3.21 0.08
MobileNetV1 0.5 63.2 4.21 0.06
DenseNet 64.2 25.49 0.14
MobileNetV1 0.75 68.3 4.67 0.07
MobileNetV1 1.0 71.0 5.43 0.11
NasNet Mobile 73.9 21.18 0.17
InceptionResNetV2 77.5 50.85 0.33
InceptionV3 77.9 31.11 0.19
InceptionV4 80.1 59.21 0.22
NasNet Large 82.6 112.61 0.36
NasNet Fictional* 50 112.61 0.36

Table 2: Summaries of model statistics through empirical
measurement. Models are sorted based on their top-1 accuracy
which is de�ned as the percentage of correctly labeled test images
using only the most probable label. We measure the average in-
ference time (third column) and standard deviation (last column)
for each model running on an EC2 p2.xlarge GPU server. We use
these state-of-the-art models in simulations to study ModiPick’s ef-
fectiveness in trading-o� inference accuracy and time. Note NasNet
Fictional is a made-up model based on NasNet Large and is only
used in Section 4.4.

0 100 200 300 400 500 600

SLA Target (ms)

0

20

40

60

80

100
S

L
A

M
is

se
s

(%
)

88

89

90

91

92

93

94

A
cc

u
ra

cy
(%

)

A
ve

ra
ge

N
et

w
or

k
T

im
e

M
ot

oX
M

ob
il
eN

et
0.

25

M
ot

oX
M

ob
il
eN

et
1.

0

SLA Misses

Accuracy

Figure 5: End-to-end performance of ModiPick with proto-
type systems. ModiPick is able to automatically transition be-
tween models with di�erent accuracy and inference runtime. As
the SLA target increases beyond the network latency ModiPick
can begin returning results using a low-latency model. As the SLA
increases further it can begin using a more accurate model for in-
ference, increasing the accuracy while continuing to decrease SLA
violations.

330KB) and then send the image together with other relevant meta
data, e.g., SLA target and request timestamps, to our Virginia-based
serving system.

In Figure 5, we plot the percentage of inference requests that
violate SLA (le� y-axis) and the percentage of inference requests
that are correctly classi�ed (right y-axis) for di�erent SLA targets.
We further annotate the �gure with three important timelines:
average network time, on-device inference time with MobileNetV1
0.25 and on-device inference time with MobileNetV1 1.0 (from
le� to right) to be�er illustrate ModiPick performance.

As we can see, ModiPick is able to gradually reduce the percent-
age of SLA misses as the SLA target increases. In particular, we start
to observe reduction in the number of SLA violations and improved
inference accuracy once the SLA target is larger than 115 ms. �is

7

0 100 200 300

SLA Target (ms)

0

50

100

150

200

250

300
E

n
d

-t
o-

en
d

la
te

n
cy

(m
s)

0 100 200 300

SLA Target (ms)

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

ModiPick
Greedy
SLA Target

(a) Comparison of average end-to-end latency (shaded with one stan-
dard deviation) and accuracy. ModiPick is able to keep track of the
SLA target when SLA ≥100ms while the greedy approach fails to do
so. ModiPick is able to improve achieved model accuracy safely as
the SLA target increases. Note that the static greed model experiences
end-to-end latency variation due to the network latency since it cannot
correct for it at runtime.

0

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

SLA Target(ms)

0

20

40

60

80

100

M
o
d
el

U
sa

g
e

(%
)

SqueezeNet
MobileNetV1 0.25
MobileNetV1 0.5
DenseNet
MobileNetV1 0.75
MobileNetV1 1.0
NasNet Mobile
InceptionResNetV2
InceptionV3
InceptionV4
NasNet Large

(b) Illustration of the models used by ModiPick to enable smooth trade-
o� between latency and accuracy. �e use of a diverse set of models
allows ModiPick to minimize SLA violations while providing highly
accurate inference results.

Figure 6: Comparison of ModiPick to the static greedy algo-
rithm described in Section 3.2. For each SLA target, we simu-
lated 10,000 inference requests and recorded the inference time
incurred by both the greedy and ModiPick.

is due to ModiPick recognizing that the time budget is extremely
small and beginning to choose a small model, MobileNetV1 0.25,
that can quickly return inference results. As the SLA increases
further, the overall inference accuracy begins to improve but still
exhibits some variation. �e improved accuracy is due to ModiPick
identifying the increased time budget and beginning to use the
more accurate InceptionV3 model while the continuing variation
in accuracy is due to ModiPick accounts for network variability
and occasionally chooses MobileNetV1 0.25.

Summary: ModiPick is able to adapt its model selection with the
goal to minimize SLA violations while improving inference accu-
racy, even when SLA target is set to be as low as executing a mobile-
optimized model on-device.

4.2 Bene�ts over static greedy model selection
To examine ModiPick’s ability to handle the trade-o�s between in-
ference latency and accuracy, we run a simulation with �rst eleven
deep learning models outlined in Table 2 (i.e. all models except

0 50 100

Network CV %
(SLA=100ms)

0

50

100

0 50 100

Network CV %
(SLA=250ms)

0

50

100

A
cc

u
ra

cy
(%

)

Accuracy

% meeting SLA

Figure 7: E�ective accuracy of ModiPick at di�erent levels
of CV with standard deviation shown. �e initial low level of
SLA a�ainment is due to the fact that the network time is initially
100ms, with a standard deviation of 0ms. As the variability of
the network increases ModiPick can take advantage of the range
of models available to it to quickly improve accuracy and SLA
a�ainment. Similarly, at a higher SLA, ModiPick can achieve high
accuracy until the network variability becomes too much at which
point it begins having to use lower latency models.

NasNet Fictional). We simulate mobile network based upon our
empirically measured campus WiFi network (see Figure 1). Note
that this network has the lowest network latency and standard
deviation among our measured network. We further examine the
e�ciency of ModiPick under variable network conditions in Sec-
tion 4.3. We compare ModiPick to the static greedy algorithm (see
Section 3.2) that always chooses the most accurate model for a
given SLA.

In Figure 6(a), we plot the average end-to-end inference time
(le�) and inference accuracy achieved by these two algorithms. �is
�gure shows that ModiPick consistently achieves up to 42% lower
inference latency, compared to static greedy. Moreover, ModiPick
can operate under a much more stringent SLA target (∼115ms) while
static greedy continues to incur SLA violations until SLA target is
more than 200ms. �e key reason is because ModiPick is able to
e�ectively trade-o� accuracy and inference time by choosing from
a diverse set of models (see Figure 6(b)). Consequently, ModiPick
has an accuracy of 68% (on par to using MobileNetV1 0.75 which
can take 2.9x more time running on mobile devices) under low SLA
target (∼115ms), but is able to match accuracy achieved by static
greedy when SLA target is higher. Note that even though static
greedy achieves up to 12% higher accuracy, it does so by sacri�cing
inference latency.

In Figure 6(b), we further analyze ModiPick performance by look-
ing at its model usage pa�erns under di�erent SLA targets. At very
low SLA target (¡30ms), ModiPick aggressively chooses the fastest
model MobileNetV1 0.25 since none of the managed models sat-
isfy Equation 2. As the SLA target increases, ModiPick explores
more accurate but slower models than MobileNetV1 0.25. �ere
are two key observations: (1) ModiPick is e�ective in picking the
more appropriate model to increase accuracy while staying safely
within SLA target. For example, InceptionResNetV2 is never se-
lected by ModiPick because be�er alternatives InceptionV3 for
lower SLA target and InceptionV4 for higher SLA target exist. (2)

8

0 20 40 60 80 100

Network Latency CV % (SLA = 100ms)

0

20

40

60

80

100

M
o
d
el

U
sa

g
e

(%
)

0 20 40 60 80 100

Network Latency CV % (SLA = 250ms)

0

20

40

60

80

100

SqueezeNet

MobileNetV1 0.25

MobileNetV1 0.5

DenseNet

MobileNetV1 0.75

MobileNetV1 1.0

NasNet Mobile

InceptionResNetV2

InceptionV3

InceptionV4

NasNet Large

Figure 8: Model usage vs. network latency (CV) shown at two di�erent SLA points. When there is a reliable network (i.e. low CV)
single models dominate as all requests have the same inference time budget. As the network becomes increasingly volatile a wider range of
models, including both higher and lower latency models, is used to meet the SLA.

ModiPick faithfully explores eligible models and is able to “con-
verge” to the most accurate model when SLA target is su�ciently
large.

Summary: ModiPick outperforms static greedy with up to 43%
end-to-end latency reduction, while is able to keep up with accuracy
with SLA budget is larger than 250ms. �e key reason is because
ModiPick is able to adapt its model selection by considering both the
SLA target and network transfer time, while static greedy naively
selects the most accurate model.

4.3 Adaptiveness to dynamic mobile network
conditions

One of the key reasons that ModiPick can meet any given SLA
targets while optimizing accuracy whenever possible is its ability
to adapt to variations in network transfer time. To closely examine
how ModiPick copes with these variations we simulate network
pro�les with increasing variability. Speci�cally, we �x the average
network latency to be 50ms, and vary CV (Coe�cient of Varia-
tion) from 0% to 100%. Here CV is de�ned as the ratio between
standard deviation and average, and a CV of 0% indicates a very
stable network condition while a CV of 100% means the network
latency distribution is dispersed with its standard deviation equals
to its average. As a point of reference, our measured Campus WiFi
network has a CV of 74%.

In Figure 7, we plot the average inference accuracy and SLA at-
tainment (percentage of requests that meet the SLA target) achieved
by ModiPick. For low SLA target (100ms), when the network is
relatively stable, ModiPick has a SLA a�ainment of less than 50%.
As the network condition becomes more variable, ModiPick is able
to increase the inference accuracy up to 10% gradually while main-
taining the SLA a�ainment. However, it is important to note that
ModiPick performs as expected by choosing the fastest possible
model, i.e., MobileNetV1 0.25. We note that, to satisfy such strin-
gent SLA targets with high network latency, alternative approaches
such as provisioning inference servers near network edge or execut-
ing latency-optimized MobileNetV1 0.25 on-device are generally
preferable. On the contrary, when given a reasonable SLA target,

e.g., slightly more than average network latency plus the time to ex-
ecute the most accurate model NasNet Large, ModiPick is resistant
to network variation well with high SLA a�ainment and maintains
an accuracy around 80% (slightly less than NasNet Large).

Figure 8 demonstrates the percentage of selected models with
increasing network variability for both a very slow SLA target
(100ms) and a reasonable SLA target (250ms). �ere are there
important trends to observe: (1) as the network becomes more
variable (larger value of CV), ModiPick matches the network vari-
ability with a subset of faster models. �is is because as ModiPick
becomes less certain about the inference request time budgets,
ModiPick starts to explore for models with higher inference ac-
curacy. (2) �e probability of exploring di�erent eligible models
is proportional to the SLA target and network variability. Faster
models, such as those in the MobileNetV1 family, are used as a
basis for low SLA target while the most accurate model, i.e., NasNet
Large, is used for a reasonable SLA target. (2) For di�erent SLA tar-
gets, ModiPick chooses to explore di�erent subset of models, e.g.,
for low SLA target, MobileNetV1 family and NasNet Mobile
and InceptionV3, for a reasonable SLA target, NasNet Large,
InceptionV4, InceptionV3, and NasNet Mobile.

Figure 8 shows the models chosen when varying CV of network
time for SLAs of 100ms and 250ms. �e SLA of 100ms is the RTT of
the simulated network leaving no time le� for inference. Similarly,
when the SLA is 250ms this is just over the RTT of the network
and the amount of time needed to run NasNet, our most complex
model. It should be noted that in our real Campus WiFi network
CV is approximately 74%.

Summary: ModiPick is e�ective in handling highly variable mobile
network by exploring a diverse set of deep learning models that expose
di�erent inference latency and accuracy trade-o�s. When provided
with very low SLA, ModiPick should be used in conjunction with on-
device inference and geographically-dispersed serving platforms to
minimize SLA violations.

4.4 Decomposing the e�ciency of ModiPick
Last, we breakdown the performance bene�ts provided by ModiPick
by a�ributing to one of its stages of our dynamic accuracy-driven

9

0 100 200 300

SLA Target (ms)

0

50

100

150

200

250

300

E
n

d
-t

o-
en

d
la

te
n

cy
(m

s)

SLA Target

0 200 400

SLA Target (ms)

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

ModiPick

Related Accurate

Pure Random

Related Random

Figure 9: Decomposition of bene�ts of ModiPick’s three-
stage algorithm. ModiPick achieves similar accuracy and SLA
a�ainment compared to related accurate, indicating the e�ective-
ness of our probabilistic approach. Both pure random and related
random performs poorly in terms of inference accuracy due to their
inability to distinguish models with di�erent accuracy and latency,
i.e., NasNet Fictional and NasNet Large.

model selection algorithm (Section 3.3). We choose counterpart al-
gorithms for each stage and evaluate the average end-to-end latency
and inference accuracy achieved by all algorithms, in managing all
twelve models listed in Table 2 We simulate a mobile network with
average network latency of 50ms and a standard deviation of 25ms
(CV = 50%).

For the �rst stage which selects the most accurate model con-
strained by its inference time distribution, we implement a pure
random algorithm that uniformly selects a model from all managed
deep learning models. For the second and third stages where we
probabilistically choose a model from the exploration set ME , we
use a related random algorithm that uniformly chooses one model
from ME and a related accurate algorithm that picks the most accu-
rate model from the exploration set. Note that we use a �ctional
model NasNet Fictional with the same inference time pro�le but
with a low inference accuracy of 50%, as a means to demonstrate
the importance of stage two and three of our algorithm.

Note, it is commonly assumed that the inference time and ac-
curacy are positively correlated, i.e., the more accurate the model,
the more time it takes to �nish inference computation. However,
in real deployment scenarios, model accuracy can �uctuate based
on the actual inference requests served. In addition, as shown in
Figure 2, deep learning models designed with di�erent network ar-
chitectures or at di�erent time can also invalidate this assumption.
Consequently, networks similar to NasNet Fictional can exist in
deployment and it is important for ModiPick to be able to explore
them appropriately.

In Figure 9, we plot the end-to-end latency (le�) and the infer-
ence accuracy (right) achieved by all four algorithms. As we can see,
all three algorithms that choose from the exploration set ME are
able to meet reasonable SLA target while pure random has approx-
imately the same latency across all SLAs. �is indicates that the
construction of ME , by stage one and two, is e�ective and enables

good exploration opportunities to stay closely below SLA targets.
�e ability to adapt to increased SLA targets is important because
it means we have the �exibility to use more accurate models.

Similarly, as the SLA target increases, pure random again achieves
approximately the same inference accuracy across all SLAs. All
three algorithms are able to gradually increase the inference ac-
curacy by using slower but more accurate models from Table 2.
However, once we have a large enough SLA target (∼150ms), the
exploration set ME is primarily consist of two models: NasNet
Large and NasNet Fictional. At this point, related random al-
gorithm starts to experience inference accuracy decreases since
it does not di�erentiate between these two models. Meanwhile,
both related accurate and ModiPick are able to steadily improve
inference accuracy by avoiding NasNet Fictional.

Note there is only a negligible decrease in accuracy using ModiPick
when compared to related accurate algorithm. �is is because
that related accurate will always choose the most accurate model
from ME while ModiPick has a low probability of picking NasNet
Fictional so as to update its model performance pro�le with con-
trolled performance degradation. As mentioned before, models
such as NasNet Fictional should not be completely ruled out
from selection. �e probabilistic behavior of ModiPick is meant to
allow for this exploration while generally maintaining accuracy,
while related accurate misses the opportunity to use models which
may have improved accuracy or latency pro�les.

Summary: ModiPick’s three-stage algorithm is e�ective in distin-
guishing and identifying the most appropriate model to use under
dynamic inference conditions. All three stages contribute to and help
ModiPick combat the variable network conditions and improve infer-
ence accuracy safely.

5 RELATEDWORK
ModiPick provides a cloud-based algorithm to improve the user-
perceived inference performance for mobile deep inference requests.
�e key idea of ModiPick is to mask the unpredictable network
performance of mobile inference requests by leveraging a pool of
deep learning models which can be used to trade-o� latency and
service quality measured as inference accuracy.

Code o�oading [17, 21] has been widely used to augment the
performance of mobile applications with constrained hardware
resources. Due to the reliance on network connectivity, code of-
�oading is o�en done at runtime [17]. Determining the optimal
partition of computation graphs can be solved optimally [17] with
approaches such as Integer Linear Programming (ILP). However,
these optimal solutions fall short because they assume access to
prior performance information, such as execution time and en-
ergy [17, 21] and o�en incur long decision time. ModiPick leverages
the key idea of runtime computation o�oading with the unique as-
pect of selecting among various type of computations, i.e., di�erent
deep learning models, for both inference speed and accuracy gain.

As deep learning models achieve unprecedented success [8, 10,
46] in classi�cation tasks such as image recognition [24, 38, 46], a
lot of e�orts [25, 46] has been invested to integrate deep learning
models to mobile application to provide novel features [8, 10]. Dif-
ferent from traditional machine learning based mobile applications,

10

e.g., activity recognition [34] or energy prediction [39], deep learn-
ing powered mobile applications raise additional challenges due to
their heavy computation needs and resource limitation of mobile
devices.

In particular, these models are o�en very “deep”, e.g., can have
more than 100s layers [24, 38], and computation-intensive in nature.
Directly running these models on resource-constrained mobile de-
vices o�en result in very long inference execution time [4], or even
cause Out-of-memory errors [7]. Mobile-speci�c model optimiza-
tions [13, 25] that reduce computation needs or taking advantage
of existing mobile hardwares, e.g., GPU or TPU, [12] can shorten
the inference execution time. However, such optimizations o�en in-
volve sacri�cing model accuracy [4, 25] or manual e�orts to compile
models to underlying hardwares that do not scale to heterogeneous
mobile hardwares [13].

Cloud-based solutions have demonstrated their e�ectiveness
in handling heterogenous mobile capacity. In particular various
model serving platforms [14, 16, 32] provides web-based services
that mobile applications can leverage. �ese platforms are o�en
designed with the key focus of managing model lifecycle from
training to deployment. ModiPick complements such platforms
with an intelligent model selection algorithm that gears toward
mobile requests.

To keep up with the increasing popularity of using deep learning
within mobile applications, there has been a wide range of work on
providing e�cient mobile deep inference. �ese e�orts range from
optimizing mobile-speci�c models to improving the performance
of inference serving systems.
Mobile-speci�c model optimization. As deep learning training
aims at achieving human-level accuracy models are becoming in-
creasingly complicated. �ese complex models o�en have high com-
putational demands and can consume signi�cant energy. As a result,
researchers have investigated various ways to make them more
e�cient [30] via model optimizations. �ese e�orts can largely
be grouped into three categories. First, post-training optimiza-
tions such as quantization uses simpler representations of weights
and bins weights to improve compressibility [6, 23] allowing for
reduced load time. Second, techniques such as pruning [23], remov-
ing model weights with low contributions, reducing the number of
computations needed for inference as well as model sizes. �ird,
redesign of networks can also lead to improved inference time. An
early example was the mobile-speci�c SqueezeNet [26] and this
trend has continued with MobileNet [25] which was designed as a
compact alternative to the complex InceptionV3 model [38].

Although being e�ective at lowering inference latency, these
optimizations o�en incur a degree of accuracy loss. For example,
MobileNets can have over 20% lower accuracy compared to Incep-
tionV3. However, these model optimizations can be used to present
a range of latency and accuracy points to allow for smooth trade-o�
between the two.
On-device execution. Enabling deep learning models to be ex-
ecuted directly on mobile devices has been a goal of many re-
searchers. �ey have taken approaches such as using simpli�ed
model architectures [25, 26, 33, 40] or reducing the complexity of
existing networks [23]. �ese approaches generally sacri�ce some
accuracy in order to improve inference speed. In essence, these

works target at either designing mobile-speci�c deep learning mod-
els or optimizing existing models to meet resource-constrained
mobile platforms. In contrast, ModiPick focuses on providing high-
quality cloud-based inference service for mobile applications.
Framework Redesigns. To enable running models across di�er-
ent hardware architectures, researchers have redesigned deep learn-
ing frameworks with the goal of providing optimized runtimes. For
instance TensorFlowLite [13] and Ca�e2 [9] both leverage mobile-
speci�c optimizations that allows deep learning models to execute
smoothly on mobile hardwares. �ese optimizations, like those
mentioned previously, are orthogonal to ModiPick which improves
mobile deep inference performance by judiciously selecting models
at runtime.
Remote Execution. �ere has lately been work regarding serving
models. It is not uncommon for inference to be done o� of mobile de-
vices either on closely located devices [18] or on remote servers [32].
For remote servers, there are a number of platforms [14, 32] that aim
to provide high-throughput serving for their models with low-level
optimizations. Alternatively serving systems such as Clipper [16]
aim to provide high throughput for a number of di�erent frame-
works by transparently making the optimizations. �ese projects
are bene�cial to ModiPick as they provide infrastructure supports
for hosting a range of models. At the same time, ModiPick comple-
ments these works by providing an automatic model selection that
adapts to unpredictable mobile environments and frees application
developers from the need to manually specifying model endpoints.

6 CONCLUSION
�e ability to provide e�cient inference execution is crucial to en-
able a wide range of application scenarios that rely on increasingly
complex deep learning models. Despite the recent advancement
in on-device inference execution, cloud-based inference is here
to stay for providing quality inference responses. In this paper,
we design a dynamic cloud-based solution called ModiPick that
optimizes inference accuracy for mobile applications that rely on
deep learning models. ModiPick does so with a pool of models that
expose di�erent latency and accuracy trade-o�s and by adapting its
model selection to the heterogeneous mobile requirements given a
prede�ned SLA, for each mobile inference request at runtime. In
addition, ModiPick leverages a probabilistic-based approach to ex-
plore the uncertain cloud inference execution time distribution and
to combat the impacts of inaccurate inference performance estima-
tion. Our evaluations show that ModiPick is able to transparently
switch between models with increasing SLAs and that ModiPick
achieves comparable accuracy while improving SLA a�ainment by
88.5% as compared to greedy algorithm.

ACKNOWLEDGMENT
�is work is supported in part by National Science Foundation
grants #1755659 and #1815619 and Google Cloud Platform Research
credits.

REFERENCES
[1] albanie/covnet-burden. h�ps://github.com/albanie/convnet-burden. (2019).
[2] Ca�e — Model Zoo. h�p://ca�e.berkeleyvision.org/model zoo.html. (2019).
[3] iPhone X - Technical Speci�cations. h�ps://www.apple.com/iphone-x/specs/.

(2019).
11

https://github.com/albanie/convnet-burden
http://caffe.berkeleyvision.org/model_zoo.html
https://www.apple.com/iphone-x/specs/

[4] List of Hosted Models. h�ps://www.tensor�ow.org/lite/models. (2019).
[5] Nexus 5 o�cial specs. h�ps://www.androidcentral.com/nexus-5-specs. (2019).
[6] NVIDIA TensorRT. h�ps://developer.nvidia.com/tensorrt. (2019).
[7] Out of Memory in nminst deep learning example. h�ps://github.com/rstudio/

tensor�ow/issues/130. (2019).
[8] 2015. How Google Translate squeezes deep learning onto a phone. h�ps:

//research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html.
(2015).

[9] 2016. Delivering real-time AI in the palm of your
hand. h�ps://code.facebook.com/posts/196146247499076/
delivering-real-time-ai-in-the-palm-of-your-hand/. (2016).

[10] 2016. Zero-Shot Translation with Google�s Multilingual Neural Ma-
chine Translation System. h�ps://research.googleblog.com/2016/11/
zero-shot-translation-with-googles.html. (2016).

[11] 2017. Deep Learning for Siri’s Voice: On-device Deep Mixture Density Networks
for Hybrid Unit Selection Synthesis. h�ps://machinelearning.apple.com/2017/
08/06/siri-voices.html. (2017).

[12] 2017. Pixel Visual Core: image processing and machine
learning on Pixel 2. h�ps://www.blog.google/products/pixel/
pixel-visual-core-image-processing-and-machine-learning-pixel-2/. (2017).

[13] 2018. Introduction to TensorFlow Lite. h�ps://www.tensor�ow.org/mobile/t�ite/.
(2018).

[14] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and E�cient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015). arXiv:1512.01274

[15] Daniel Crankshaw, Peter Bailis, Joseph E. Gonzalez, Haoyuan Li, Zhao Zhang,
Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan. 2014. �e Missing Piece in
Complex Analytics: Low Latency, Scalable Model Management and Serving with
Velox. CoRR abs/1409.3809 (2014). arXiv:1409.3809 h�p://arxiv.org/abs/1409.3809

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). USENIX Association, Boston, MA, 613–627.

[17] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code O�oad, In ACM MobiSys 2010.

[18] Biyi Fang, Jillian Co, and Mi Zhang. 2017. DeepASL: Enabling Ubiquitous and
Non-Intrusive Word and Sentence-Level Sign Language Translation. In Proceed-
ings of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys ’17).
ACM, New York, NY, USA, Article 5, 13 pages. h�ps://doi.org/10.1145/3131672.
3131693

[19] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. 2018. Low Latency RNN
Inference with Cellular Batching. In Proceedings of the �irteenth EuroSys Con-
ference (EuroSys ’18). ACM, New York, NY, USA, Article 31, 15 pages. h�ps:
//doi.org/10.1145/3190508.3190541

[20] A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. 6645–6649. h�ps://doi.org/10.1109/ICASSP.2013.
6638947

[21] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and Dejan Milojicic.
2003. Adaptive O�oading Inference for Delivering Applications in Pervasive
Computing Environments. In Proceedings of the First IEEE International Conference
on Pervasive Computing and Communications (PERCOM ’03). IEEE Computer
Society, Washington, DC, USA, 107–. h�p://dl.acm.org/citation.cfm?id=826025.
826367

[22] Tian Guo. 2018. Cloud-based or On-device: An Empirical Study of Mobile
Deep Inference. In Proceedings of 2018 IEEE International Conference on Cloud
Engineering (IC2E ’18).

[23] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained �antization and Hu�man
Coding. CoRR abs/1510.00149 (2015). arXiv:1510.00149

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and
Pa�ern Recognition (CVPR) (2016), 770–778.

[25] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andree�o, and Hartwig Adam. 2017. MobileNets:
E�cient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861

[26] Forrest N. Iandola, Ma�hew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR abs/1602.07360 (2016). arXiv:1602.07360

[27] Norman P. Jouppi, Cli� Young, Nishant Patil, David Pa�erson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Cli�ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Ma�
Dau, Je�rey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Go�ipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Ja�ey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, �omas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Ma� Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Ma�hew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory �orson, Bo
Tian, Horia Toma, Erick Tu�le, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.
h�ps://doi.org/10.1145/3079856.3080246

[28] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2012. ImageNet Classi-
�cation with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1
(NIPS’12). Curran Associates Inc., USA, 1097–1105. h�p://dl.acm.org/citation.
cfm?id=2999134.2999257

[29] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. ImageNet Clas-
si�cation with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bo�ou, and K. Q.
Weinberger (Eds.). Curran Associates, Inc., 1097–1105.

[30] Institute of Electrical and Electronics Engineers. 2017-12. E�cient Processing
of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 105, 12 (2017-12),
2295,2329.

[31] Samuel S. Ogden and Tian Guo. 2018. MODI: Mobile Deep Inference Made E�-
cient by Edge Computing. In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18). USENIX Association, Boston, MA.

[32] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. TensorFlow-
Serving: Flexible, High-Performance ML Serving. (2017). arXiv:1712.06139

[33] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: ImageNet Classi�cation Using Binary Convolutional Neural Net-
works. (2016), 525–542.

[34] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L. Li�man.
2005. Activity Recognition from Accelerometer Data. In Proceedings of the 17th
Conference on Innovative Applications of Arti�cial Intelligence - Volume 3 (IAAI’05).
AAAI Press, 1541–1546. h�p://dl.acm.org/citation.cfm?id=1620092.1620107

[35] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
2009. �e Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Computing 8, 4 (Oct. 2009), 14–23. h�ps://doi.org/10.1109/MPRV.2009.82

[36] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay. 2016.
Containers and Virtual Machines at Scale: A Comparative Study. In Proceedings
of the 17th International Middleware Conference (Middleware ’16). ACM, New
York, NY, USA, Article 1, 13 pages. h�ps://doi.org/10.1145/2988336.2988337

[37] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
arXiv:1409.1556

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Io�e, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
CoRR abs/1512.00567 (2015). arXiv:1512.00567

[39] Z. Tang, S. Guo, P. Li, T. Miyazaki, H. Jin, and X. Liao. 2015. Energy-E�cient
Transmission Scheduling in Mobile Phones Using Machine Learning and Par-
ticipatory Sensing. IEEE Transactions on Vehicular Technology 64, 7 (July 2015),
3167–3176. h�ps://doi.org/10.1109/TVT.2014.2350510

[40] X. Tian, X. Zheng, Y. Ji, B. Jiang, T. Wang, S. Xiong, and X. Wang. 2018. iBlink: A
Wearable Device Facilitating Facial Paralysis Patients to Blink. IEEE Transactions
on Mobile Computing (2018), 1–1. h�ps://doi.org/10.1109/TMC.2018.2868660

[41] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Advances in Neural Information Pro-
cessing Systems 26, C. J. C. Burges, L. Bo�ou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger (Eds.). Curran Associates, Inc., 2643–2651.

[42] Yonghui Wu, Mike Schuster, Zhifeng Chen, �oc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Je�
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cli� Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macdu� Hughes, and Je�rey Dean. 2016.
Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144

[43] F. Yan, Y. He, O. Ruwase, and E. Smirni. 2018. E�cient Deep Neural Network
Serving: Fast and Furious. IEEE Transactions on Network and Service Management
15, 1 (March 2018), 112–126. h�ps://doi.org/10.1109/TNSM.2018.2808352

[44] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. 2018. NetAdapt: Platform-Aware Neural
Network Adaptation for Mobile Applications. (2018), 289–304.

[45] Mohan Yogeswaran and S. G. Ponnambalam. 2012. Reinforcement learning:
exploration–exploitation dilemma in multi-agent foraging task. OPSEARCH 49,
3 (01 Sep 2012), 223–236. h�ps://doi.org/10.1007/s12597-012-0077-2

12

https://www.tensorflow.org/lite/models
https://www.androidcentral.com/nexus-5-specs
https://developer.nvidia.com/tensorrt
https://github.com/rstudio/tensorflow/issues/130
https://github.com/rstudio/tensorflow/issues/130
https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html
https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html
https://machinelearning.apple.com/2017/08/06/siri-voices.html
https://machinelearning.apple.com/2017/08/06/siri-voices.html
https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/
https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/
https://www.tensorflow.org/mobile/tflite/
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1409.3809
http://arxiv.org/abs/1409.3809
https://doi.org/10.1145/3131672.3131693
https://doi.org/10.1145/3131672.3131693
https://doi.org/10.1145/3190508.3190541
https://doi.org/10.1145/3190508.3190541
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
http://dl.acm.org/citation.cfm?id=826025.826367
http://dl.acm.org/citation.cfm?id=826025.826367
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
https://doi.org/10.1145/3079856.3080246
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://arxiv.org/abs/1712.06139
http://dl.acm.org/citation.cfm?id=1620092.1620107
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1145/2988336.2988337
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.00567
https://doi.org/10.1109/TVT.2014.2350510
https://doi.org/10.1109/TMC.2018.2868660
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/TNSM.2018.2808352
https://doi.org/10.1007/s12597-012-0077-2

[46] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and �oc V. Le. 2017. Learning
Transferable Architectures for Scalable Image Recognition. CoRR abs/1707.07012
(2017). arXiv:1707.07012 h�p://arxiv.org/abs/1707.07012

[47] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and �oc V. Le. 2017. Learning
Transferable Architectures for Scalable Image Recognition. CoRR abs/1707.07012
(2017). arXiv:1707.07012

13

http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

	Abstract
	1 Introduction
	2 Motivation and Problem Statement
	2.1 On-device inference and its limitations
	2.2 Cloud-based inference and its potential
	2.3 Problem Statement

	3 ModiPick Design
	3.1 The need of cloud-based multi-models hosting
	3.2 Baseline greedy approaches
	3.3 Accuracy-driven dynamic model selection

	4 Experimental Evaluation
	4.1 Prototype evaluation
	4.2 Benefits over static greedy model selection
	4.3 Adaptiveness to dynamic mobile network conditions
	4.4 Decomposing the efficiency of ModiPick

	5 Related Work
	6 Conclusion
	References

