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Characterizing the Deep Neural Networks
Inference Performance of Mobile Applications

Samuel S. Ogden, Tian Guo

Abstract—Today’s mobile applications are increasingly leveraging deep neural networks to provide novel features, such as image and
speech recognitions. To use a pre-trained deep neural network, mobile developers can either host it in a cloud server, referred to as
cloud-based inference, or ship it with their mobile application, referred to as on-device inference. In this work, we investigate the
inference performance of these two common approaches on both mobile devices and public clouds, using popular convolutional neural
networks. Our measurement study suggests the need for both on-device and cloud-based inferences for supporting mobile
applications. In particular, newer mobile devices is able to run mobile-optimized CNN models in reasonable time. However, for older
mobile devices or to use more complex CNN models, mobile applications should opt in for cloud-based inference. We further
demonstrate that variable network conditions can lead to poor cloud-based inference end-to-end time. To support efficient cloud-based
inference, we propose a CNN model selection algorithm called CNNSelect that dynamically selects the most appropriate CNN model
for each inference request, and adapts its selection to match different SLAs and execution time budgets that are caused by variable
mobile environments. The key idea of CNNSelect is to make inference speed and accuracy trade-offs at runtime using a set of CNN
models. We demonstrated that CNNSelect smoothly improves inference accuracy while maintaining SLA attainment in 88.5% more

cases than a greedy baseline.

Index Terms—Mobile application, DNN inference service, DNN model management, performance optimization

1 INTRODUCTION

Resource intensive deep learning models are increasingly
used in mobile applications [1}, |2] to add features such
as real-time language translation, image recognition and
personal assistants [1]-[3]. To use deep learning models,
mobile applications can either utilize cloud-based inference
services or run directly on-device. However, achieving faster
deep inference with high accuracy is often constrained by
mobile computation, storage and network conditions.

In this work, we ask the question: what are the per-
formance trade-offs of using on-device versus cloud-based
inference for mobile applications. We conduct an empirical
measurement study to quantify both the end-to-end infer-
ence time and resource consumption under different setups.
In particular, we identify a number of key factors, including
deep learning frameworks, mobile devices, and CNN model
compression techniques, that impact on-device inference.
Further, we study the cloud-based inference performance
under different mobile network conditions and using dif-
ferent cloud servers. We identify that model startup latency
can impose orders of magnitude time overhead and should
be properly considered when managing cloud inference
servers.

In sum, our observations reveal the relatively large,
though shrinking, performance gaps between on-device and
cloud-based inference. As such, it is still preferable for older
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mobile devices that require more complex CNN models
to resort to cloud-based inference. To support this efficient
cloud-based inference under dynamic mobile network con-
ditions, we propose CNNSelect to manage and select the
most appropriate CNN model for each mobile inference re-
quest. The key insight for designing CNNSelect is that each
model in a set of CNN models exposes different inference
time and accuracy trade-offs that can be leveraged to mask
the inherent mobile network variability. The dynamic model
selection algorithm frees mobile developers from specify-
ing CNN models before deployment and the probabilistic-
nature makes it more robust towards unpredictable perfor-
mance variations such as increased inference time due to
sudden workload spikes.

We make the following contributions.

o Performance characterization of mobile deep inference.
We conducted an extensive empirical performance anal-
ysis of using CNN models in mobile applications. We
identified key performance factors, e.g., mobile hardware
and network conditions, and quantified their impacts for
both on-device and cloud-based inference.

¢ Performance-aware CNN models selection algorithm.
We propose CNNSelect, a probabilistic-based algorithm
that chooses the best CNN model to account for dy-
namic mobile environments when using cloud-based in-
ference. We conducted an end-to-end evaluation and
extensive empirical-driven simulations that demonstrate
CNNSelect’s ability to smoothly trade-off between infer-
ence accuracy and time.
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Fig. 1: Image recognition with deep neural networks. An
image passes through a deep neural network that consists of
layers of neurons. The output layer produces the inference
labels that best describe the image.

2 BACKGROUND
2.1 Deep Learning Models

Deep learning refers to a class of artificial neural networks
(ANNSs) for learning representations of input data utilizing
many layers and are widely used for visual and speech
recognition [4]-[7]. In this paper, we focus on a special
class of deep learning models called convolutional neural
networks (CNNs) [4} |8 |9]. CNNs are widely used for visual
recognition tasks, e.g., in Figure[} and have been seen to ex-
hibit high accuracy in such tasks. CNNs usually consist of a
number of convolution layers followed by other layer types,
such as pooling layers and fully connected layers. Each
layer takes data from previous layer, processed through
non-linear activation functions, and apply predefined com-
putation. More specifically, convolutional layers generate
feature maps [10], while pooling layers control overfitting
by reducing parameters in the representation [11].

There are a number of popular deep learning frame-
works [12]-[15] that ease the training and deploying of
deep learning models. Different frameworks require differ-
ent syntaxes to describe CNNs and have different trade-offs
for training and inference [16] phases. In this paper, we look
at pre-trained CNN models [17] supported by two popular
deep learning frameworks: Caffe and TensorFlow. A pre-
trained model often consists of a binary model file and a
text file that describe the model parameters and the network
respectively, as well as text files of the output labels.

2.2 Mobile Deep Inference

Mobile deep inference is defined as mobile applications
using deep learning models to provide novel application
features, such as image recognition. Mobile deep infer-
ence can happen either directly on-device or on cloud-based
servers [18], as illustrated in Figure

On-device inference. A number of deep learning frame-
works, such as Caffe2 [13] and TensorFlow Lite [19]], support
executing deep learning models directly on mobile devices.
These frameworks perform inference using exported models
that have trained on powerful servers. Even with the op-
timizations in these software libraries, on-device inference
can still be orders of magnitude slower than running infer-
ence on powerful servers (shown in Figure [3|). These large
performance gaps are mainly due to constraints on mobile
hardware, e.g., lacking GPUs and having relatively little
memory. The inference inefficiency is exacerbated when
an application needs a more accurate model or needs to
load multiple models, e.g., chaining the execution of an
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Fig. 2: Design choices of deep learning powered mobile
applications. We use our implemented object recognition
Android App as an example to illustrate the steps involved
to perform on-device and cloud-based inference.
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Fig. 3: Inference time of on-device and cloud-based in-
ference. We measured the inference time of four CNN
models running on a high-end mobile device and an AWS
p2.xlarge server.

optical character recognition model and a text translation
model [20, 21]. To ensure mobile inference execution com-
pletes in a reasonable time, mobile-specific models [5] 22|
often sacrifice inference accuracy and thus may exclude
complex application scenarios. Even though on-device infer-
ence is a plausible choice for simple tasks and newer mobile
devices, it is less suitable for complex tasks and older mobile
devices.
Cloud-based inference. Instead of on-device execution, mo-
bile applications can send their inference requests to cloud-
hosted models. A number of model serving systems [23]-
[25] have been proposed to manage different model versions
available for executing inferences. These systems often focus
on maximizing inference throughput by batching incoming
requests. This may increase waiting time of some requests
and consequently have negative impacts on end-to-end
inference requests.

To utilize such systems, developers need to manually
specify the exact DNN model to use through exposed API
endpoints. For mobile developers, this manual model selec-



mobile . Memory Storage Battery
device | OS version Ccru GPU (GB)  (GB) (mAh)
. 2.26 GHz  129.8 GFLOPs
Nexus 5 | Android 6.0 quad-core ‘Adreno 330 2 16 2300
. 25GHz  129.8 GFLOPs
LG G3 | Android 6.0 quad-core ‘Adreno 330 3 32 3000
. 2.0Gz 130 GFLOPs
Moto G5 Plus | Android 7.0 octacore Adreno 506 3 32 3000
. . 4x 2.35GHz 567 GFLOPs
Pixel 2 | Android 9.0 4x 1.9GHz Adreno 540 4 128 2700

TABLE 1: Mobile devices used in on-device measurement.
We used four mobile devices that run their respectively
most up-to-date OSes and have variable hardware resource
capacities. Among which, Pixel 2 has a much faster mobile
GPU.

tion fails to consider the impact of dynamic mobile network
conditions, which can take up a significant portion of end-
to-end inference time [26, 27]. Such static development-
time efforts can lead to picking a faster but less accurate
DNN model or risking SLA violations by choosing a more
sophisticated DNN model.

Cloud-based inference has the potential to support a
plethora of application scenarios, simple and complex, and
heterogeneous mobile devices, old and new. However, cur-
rent mobile-agnostic serving platforms fall short in automat-
ically adapting inference accuracy to varying time require-
ments of mobile inference requests.

3 UNDERSTANDING ON-DEVICE INFERENCE

In this section, we perform an empirical measurement of
on-device inference time and study the impact of key fac-
tors such as deep learning frameworks, mobile capacities,
CNN models and model compression techniques. We then
analyze the resource and energy implications of running on-
device inference.

Measurement methodology. We implemented two
Android-based mobile image classification applications
and evaluated the on-device inference performance with
four mobile devices outlined in Table[T] The first application
compared two mobile inference execution frameworks,
Caffe2 [13] and CNNDroid [28] in order to compare setup
and execution time of CNNs on the Nexus5 device. The
second application leveraged TensorFlow Mobile [29] in
order to examine the impact of various model architectures
and optimizations across all of our mobile devices.

For these tests we used a variety of CNN models.
For the first application, we used AlexNet [4], NIN [8],
and SqueezeNet [9]. These three models were chosen
because they have similar top-5 accuracy on the Ima-
geNet dataset [30] but differ vastly in terms of model
size and complexity. The second application used four
models that consisted of two accuracy-optimized mod-
els, i.e., InceptionVv3 and Inceptionv4 [31], and
two time-optimized models, i.e., MobileNetVl 0.25 and
MobileNetVl 1. [32]. These models were chosen for ex-
posing a range of accuracy and complexity trade-offs. Using
the second application we also did an in-depth study of the
InceptionV3 model and optimizations thereof.

We furthermore used two different image datasets for
generating inference requests. For the first application we
used an image set (images_1) that consists of 15 images. For

the second application we used a training set of 3314 to re-
train our target models and another 1000 images (images_2)
to evaluate inference accuracy and time.

For each experiment we break the end-to-end inference
time into three parts: loading input image, loading CNN
model, and CNN model execution time. In the first ap-
plication we output these time intervals to the Android
log file which we accessed with Logcat, a command line
tool, allowing us to additionally collect Android Runtime
(ART) garbage collection information and application-level
logs. We additionally measured the power and resource
consumption with the Trepn profiler [33] to sample battery
level, normalized CPU and GPU load every 100ms, fol-
lowing best practice techniques to minimize profile impact.
Our second application recorded time intervals to an SQLite
database.

3.1 On-device Inference Performance Analysis

We begin by analyzing the performance differences by dis-
secting the on-device image recognition task with an in-
depth study of time breakdown, and resource utilization.
We focus on understanding the performance of on-device
deep inference and the implications for potential perfor-
mance improvement.

Impact of Deep Learning Frameworks. The choice of deep
learning framework can impact the CNN model design and
have a significant impact on the performance, due to differ-
ent model sizes and complexities. We quantify such impacts
through both the model loading and inference execution
time. We plot the loading time in Figure in log scale.
For loading the same model (AlexNet and NIN), the ported
Caffe library takes up to 4.12 seconds, about 22X faster than
using CNNDroid. Furthermore, it only takes an average
of 103.7 ms to load the smallest SqueezeNet modelﬂ This
loading happens whenever users first launch the mobile
application, and potentially when a suspended background
app is brought back. Our measurement of CNNDroid’s long
loading time suggests that users need to wait for up to 88
seconds to be able to interact with the mobile app. Although
long loading time might be amortized across a number of
inference requests during one user interaction session, it still
negatively impacts user experiences.

Next, we show the time taken to perform inference
on the input image using five different configurations in
Figure For each configuration, we measure the com-
putation time taken for all five images and collect a total
of 75 data points. Each bar represents the average com-
putation time across three versions of the same image and
the standard deviation. CNNDroid-based AlexNet inference
achieves the lowest average of 1541.67 ms, compared to
the longest time of 13745.33 ms using ported Caffe NIN
model. Even with the fastest device-based inference, it still
takes three times more than CPU-based cloud inference [18].
In addition, we plot the end-to-end inference time in Fig-
ure This total inference time includes the bitmap scal-
ing time, the GC time, and the model computation time.
CNNDroid-based approach takes an average of 1648.67 ms
for performing object recognition on a single image, about

1. We did not measure the performance of SqueezeNet using CN-
NDroid due to the lack of support by CNNDroid.



5 16000
Approach
Il Caffe Lib
4 3 CNNDroid

14000

Loading Time [ms]
S
Model Computation Time (ms)

AlexNet NIN
Model Type

SqueezeNet

((a)) Model loading time.

I Caffe+AlexNet
Il Caffe+NIN
Il Caffe+SqueezeNet

Image (Sorted by Original Size)

((b)) Model execution time.

16000
I Caffe+AlexNet

Il Caffe+NIN
Il Caffe+SqueezeNet

14000

Total Inference Time (ms)

12000 [ CNNDroid+AlexNet 12000 [ CNNDroid+AlexNet
10000 [ CNNDroid+NIN £ 10000 ] CNNDroid+NIN
T 8000 8000
6000 6000
10° 4000 4000
2000 2000
10' 0 0
1 2 3 4 5 1 2 3 4 5

Image (Sorted by Original Size)

((c)) End-to-end inference time.

Fig. 4: Caffe on-device inference time. We compare two approaches for device-based inference using three CNN models.
When using CNNDroid-based approach, trained models need to be converted to supported format.
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Fig. 5: Comparisons of on-device inference using different
mobile devices and CNN models. The high-end Pixel 2 im-
proves on-device inference speed by 2.3X compared to other
devices. The mobile-specific CNN models, e.g., MobileNet
family, only take an average of 150ms to run and are 27.2x
faster than server-centric models, i.e., Incept ion. Note, the
time to load the 330KB image is shown but negligible.

seven times faster than using ported Caffe models. Based on
the response time rules [34, 35], it might lead to poor user
experiences when using certain on-device inference.
Impact of Heterogenous Mobile Capabilities. Next, we
measure the end-to-end image classification time for run-
ning InceptionV3 using TensorFlow Mobile framework
on different mobile devices. In Figure we plot the
time breakdown of loading the image and the CNN
model, as well as model computation time. Mobile devices
vary in their ability to load and run the server-centric
InceptionV3 model. As we can see, older or less capable
devices (left three bars) take up to 3.5 seconds to return
inference results to mobile users. However, the nearly 2 sec-
onds of model load time could be amortized across multiple
runs or reduced by using smaller CNN models. Although
newer mobile hardware is able to deliver acceptable user
performance even for relative complex CNN models, older
mobile devices would benefit from having access to simpler
CNN models or using cloud-based inferences.

Impact of CNN Models. CNN models differ from tradi-
tional deep learning models in that they use convolutional

layers as their input. This has two main effects. First, convo-
lutional layers typically use shared weights for their convo-
lutional layers, decreasing the amount of storage needed for
the models themselves. Second, these convolutional layers
increase accuracy for image classification tasks but greatly
increase the memory usage of model execution due to the
generation of intermediate data. Therefore we further study
the performance differences when running different CNN
models on a powerful mobile device. We choose four pop-
ular CNN models and run them using TensorFlow mobile
framework on a Pixel2 mobile phone [36]. For each CNN
model, we measured the inference time for running images_2
test set and calculated the average. In Figure we show
that Pixel2 is able to execute both MobileNetV1l models
in less than 133ms (352ms) on average. However, Pixel2
takes 48.7X longer to load larger Inception models and is
5.6X-27.4X slower to perform the model computation using
Inception models. We observed that the model loading
time is more consistent compared to the model computa-
tion. This indicates that model computation might be more
subject to the resource interference between foreground and
background applications.

Impact of CNN Model Compression. Compactly storing
deep learning models is key to our vision of supporting
a wide selection of on-device models. However, compres-
sion techniques generally trade-off inference accuracy for
compression effectiveness. In this section, we first quan-
tify the storage savings of four post-training compression
techniques and then compare each technique’s impact on
inference performance.

Figure[6(a)] compares the uncompressed and compressed
model sizes. For each model, we plot the baseline uncom-
pressed size (left bar) and the gzip version (right bar). As
we can see, the 8-bit quantized model leads to the most
storage saving of 75% regardless of gzip compression. In
addition, the unquantized models (retrained and optimized)
see only about 7% savings while the rounding quantized
model sees a 72.6% storage reduction after being gzipped.
Our observations suggest that both quantization and gzip
compression can lead to significant storage savings, espe-
cially when combined.

Next, we compare the inference speed and accuracy of
each model. Figure[6(b)|shows the time taken by each model
and its accuracy. It is important to note that majority of
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Fig. 6: Comparisons of model compression techniques.
Model compressions can greatly affect the on-disk storage
requirements as well as impacting the accuracy and latency
of models. Overall, the 8-bit quantized model is superior
in storage saving and inference speed but experiences 6%
accuracy decrease. The retrained model is excluded due to
unsupported operations on mobile devices.

TABLE 2: Summary of GC activities when wusing
CNNDroid-based inference. ART uses the default CMS GC,
and the GC time takes up to 9.89% during model loading,
and up to 25% during user interactions. The average GC
pause time can be up to 39.23 ms.

CNNDroid Ph Duration[ms] Num. GC GC
On-device Inference €3 lEasion ms of GC Time [ms] Pause [ms]
AlexNet Load 84537.33 4.33 513.55 10.42
NIN Model 37975 16.67 3757.30 175.76
AlexNet User 11800 4 536.55 4.60
NIN | Interaction 17166.67 7 4307.18 274.66

the inference time is in loading the model into memory
and thus could be amortized over sequential mobile infer-
ences. However, for one-off mobile inferences, the model
loading time dominates the end-to-end inference time. The
small 8-bit quantized model provides the fastest end-to-
end response time with the lowest model loading time, but
a slightly increased inference time. In our results, we do
see a small accuracy increase for the rounding quantized
model. But such observations are not common and would
be detected through metadata tracking. In sum, model
compression techniques have different impacts on model
storage, inference speed and accuracy. We could leverage
these observations to carefully select techniques that pro-
vide different tradeoffs.

Impact of Limited Mobile Memory. During loading
CNNDroid-based models, we observe much more frequent,
and long lasting garbage collecting activities performed by
Android Runtime in our mobile device. When running our
app using CNNDroid library, we have to request for a large
heap of 512 MB memoryj’| Even with a large heap, the
memory pressure of creating new objects has lead to a total
of 8.33 (and 23.67) GC invocations when using CNNDroid-
based AlexNet (and NIN) model, as shown in Table [2| Our
evaluation suggests that by allocating more memory to deep
learning powered mobile apps, or running such apps in

2. Running the app with the default 192 MB memory will lead to
OutOfMemoryError.
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Fig. 7: Bitmap downscaling time. The time taken to down-
scale the image in the mobile device grow with the image
size. Specially, larger images also experiences proportionally
longer scaling time because of the limited memory resources
assigned to the mobile application.
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Fig. 8: Energy consumption and resource utilization of on-
device object recognition task.

more powerful mobile devices can mitigate the impact of
garbage collection.

Impact of Image Size. Because the CNN models in this
test only require images of dimension 224 by 224 pixels
to perform inference tasks, we can scale input image to
the required dimension before sending. Figure [7] shows
the time taken to scale images with different sizes. Each
data point represents the average scaling time across five
different runs. The time taken to resize image grows as its
size increases. It is only beneficial to downscale an image
of size 1 to xo if Ty(x1,z2) + Th(z2) < T,(z1), where
Ty(z,y) represents the time to downscale an image from
size x to y and T,,(x) denotes the time to upload an image
of size x to a cloud server. For example, based on our
measurement, it takes an average of 36.83 ms to upload an
image of 172 KB to our cloud server. Also, from Figure@ we
know that it takes up to 38 ms to resize an image less than
226 KB. By combining these two observations, it is easy to
conclude that directly uploading image one to five is more
time efficient. We can expect to make informed decisions
about whether resizing an image of size « before uploading
is beneficial or not given enough time measurements of
resizing and uploading steps. Our analysis shows that on-
device inference’s performance bottlenecks mainly exhibit
in loading model and computing probability steps.

3.2 On-device Inference Resource and Energy Analysis

In Figure |8, we analyze both the energy consumption and
resource utilization when running our app in different con-



figurations . We compare the time-series plots of running
AlexNet model using Caffe Android library and CNNDroid
framework. The plots correspond to experiment runs that
perform inference tasks on image set one.

For Caffe Android library based approach, we observe
an initial energy consumption (and CPU utilization) that
increases corresponding to loading AlexNet CNN model
into the memory, a continuation of energy spike during
model computation, and the last phase that corresponds
to displaying images and the most probable label texts, in
Figure and Figure The other two CNN models,
NIN and SqueezeNet, exhibit very similar usage patterrﬂ
Specifically, in the case of NIN, the initial model loading
causes the energy consumption to increase from baseline
1081.24 mW to up to 5000 mW; when performing the model
computation, both the energy consumption and CPU uti-
lization spikes to more than 7000 mW and 66.2%. Note in the
case of SqueezeNet, we only observe a very small window
of both energy and CPU spikes at the very beginning of
measurement. This is because SqueezeNet can be loaded
in 109 ms, compared to more than 3000 ms to load either
AlexNet or NIN.

In contrast, we observe two key usage differences in CN-
NDroid approach, as shown in Figure and Figure
First, CNNDroid-based AlexNet exhibits a longer period of
more stable and lower energy consumption compared to its
counterpart in Caffe-based approach. This is mainly because
CNNDroid explicitly expresses some of the data-parallel
workload using RenderScript and is able to offload these
workload to more energy-efficient mobile GPU [37] (indi-
cated by the high GPU utilization during model loading).
Second, the total model computation time is significantly
shortened from 40 seconds to around five seconds. In
all, by shifting some of computation tasks during model
loading, CNNDroid-based approach successfully reduces
the user perceived response time. However, the CNNDroid
approach consumes 852 mWh energy, over 42% more
than Caffe-based approach. Note 91% of CNNDroid energy
is consumed during model loading phase, and therefore
can be amortized by performing inference tasks in batch.
In other words, the CNNDroid-based approach is more
energy-efficient in performing inference tasks compared to
the Caffe-based approach when CNN models are preloaded
into the mobile memory.

4 UNDERSTANDING CLOUD-BASED INFERENCE

Next, we measured the cloud-based inference performance
under different key factors such as cloud server capacity,
CNN models, and mobile network. We then analyze the
resource and energy implications of running cloud-based
inference. We used four types of cloud-based servers (sum-
marized in Table ) with different capacities. These cloud
servers range from burstable servers to GPU-accelerated
servers.We run TensorFlow framework behind a flask-based
web server and executed inference requests using different
images and CNN combinations.

3. Interested readers can refer to our prior work [18] for additional
results of Caffe-based NIN and SqueezeNet models, and CNNDroid-
based NIN.

cloud RAM

server vCPU GPU (GB) Storage Network (Gbps)

t2.medium 2 N/A 4 N/A N/A

c5.]arge 2 N/A 4 EBS only Up to 10

p2.xlarge 4 1 61 N/A High
8 Intel 1 Nvidia 60GB

g22darge | xoonE52670 GRIDK520 12 instance store N/A

TABLE 3: Cloud servers used in cloud-based measurement.

image recognition time breakdown (ms)

inference mode model image image  probability

loading  resizing uploading computing
g2.2xlarge+CPU N/A 76.2 36.8 238.6
g2.2xlarge+GPU N/A 76.2 36.8 18.6

TABLE 4: Impact of hardware acceleration. We measured
the image recognition time with and without using GPU.
We also included the on-device performance from Figure 4]
as baselines.

4.1 Cloud-based Inference Performance Analysis

In this section, we present the measurement results of image
recognition time and mobile resource utilization for both
cloud-based and on-device inference.

Impact of hardware acceleration. Table [ summarizes the
average end-to-end performance and resource consumption
of executing object recognition using both cloud-based and
on-device inference modes. We use CPU-only Caffe frame-
work and GPU accelerated Caffe framework for toggling the
CPU and GPU mode in our g2.2xlarge server. For each
inference mode, we repeat the recognition tasks using all
fifteen images and three CNN models. We measure the time
to execute each step and calculate the average. Similar to
on-device inference the task of image recognition is further
broken down into four steps: loading CNN models into
memory, downscaling image input to desired dimension,
uploading input data to the cloud server, and executing
the inference. In contrast to on-device deep inference, in the
cloud-based scenario the time to load models is negligible
because models already reside inside the memory and can
be used to execute the inference task immediately. Similarly,
on-device mode does not incur any time for uploading
image bitmaps.

Recall, the inference time is the sum of rescaling, upload-
ing bitmap and inference execution over one bitmap, and
the recognition time is the sum of amortized model loading
time over a batch of images and inference time. The average
cloud-based inference time is 351.59 ms/131.59 ms when
using CPU-only/GPU of a well-provisioned cloud instance
hosted in a nearby data center. As shown, because inference
tasks are typically data-parallel and therefore can be accel-
erated by up to 10x when using GPU. However, we should
note that such results represent a lower bound performance
of real-world setting. In a real-world deployment scenario,
image recognition time can last much longer due to reasons
such as overloaded cloud servers and variable mobile net-
work conditions. The total inference time when running on-
device is almost 9 seconds when using Caffe-based model,
and 2.2 seconds when using CNNDroid model.

Impact of model startup latency. Next, we studied the
inference execution time difference of hot start versus cold
start model. Here, hot start inference time refers to the time
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Fig. 9: Comparison of inference latency of cloud-based
inference with four CNN models. The Inceptionv4 that
runs on the p2 . x1arge GPU-accelerated server is over 2.5X
faster than the MobileNet 0.25 on the MotoX. This high-
lights the advantage of cloud-based inference in providing
high-accuracy and low-latency results and demonstrates the
potential of cloud-based inference for enabling inference
latency and accuracy trade-offs.

CNN | accuracy (%) inference time (ms)

model | topl  top5 hot start cold start
SqueezeNet | 49.0 729 28.61 +1.13 173.38 + 25.73
MobileNetV1 025 | 49.7  74.1 25.73 +1.22 272.81 £ 45.00
MobileNetV1 0.5 | 63.2 84.9 26.34 +£1.19 302.77 + 45.50
DenseNet | 64.2 85.6 49.55 £3.21 | 1149.04 & 108.00
MobileNetV1 0.75 | 68.3 88.1 28.02 +1.14 351.92 + 47.38
MobileNetV11.0 | 71.8  90.6 28.15 +1.22 421.23 4 47.14
NasNet Mobile | 739  91.5 55.31 +4.09 | 2817.25 £ 123.73
InceptionResNetV2 | 775  94.0 76.30 + 5.74 | 2844.29 + 106.49
InceptionV3 | 779  93.8 55.75 4+ 1.20 | 1950.71 £ 101.21
InceptionV4 | 80.1 95.1 82.78 + 0.89 | 3162.24 + 133.99
NasNet Large | 826  96.1 | 112.61 & 6.09 | 7054.52 + 238.36

TABLE 5: Summaries of CNN model statistics through em-
pirical measurement. We measured the average inference
time (with standard deviation) with/out startup latency for
each model running on an EC2 p2.xlarge GPU server.

taken if the CNN model has been loaded into the memory,
i.e., the model has been used to service inference requests
previously. In the case of cold start, we reloaded the CNN
model every time before executing the inference request and
measured the cold start inference time starting from loading
the CNN model until the inference response is generated.
Table B summarizes the CNN model accuracies and
inference execution time averaged across 1000 inference
requests. First, we observe a distinct correlation between
accuracy and inference time. Additionally, the cold start
time is generally much larger than the hot start time, and in-
creases at a much faster rate. Another important observation
is that cold start time is harder to predict than hot start time.
For example, in the case of DensNet, we observed about
23X increase compared to 12X increase for a similarly sized
MobileNet model. The increased time can be attributed to
complex CNN structure which requires longer setup time
and large CNN model size that leads to longer time to load
into GPU memory. Therefore it is critical to keep important
and often used CNN models in the memory.
Impact of CNN models. We next study how different
CNN models and cloud servers lead to different inference
execution time. We evaluated four different types of CNN
models with reasonable inference accuracy (more detailed in
Table 5). For each CNN model, we used an image of 110KB
and repeated the measurement for 1000 times. We measured
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((a)) Cloud-based inference re-

sponse time. ((b)) Mobile network latency.

Fig. 10: Comparisons of cloud-based inference under dif-
ferent mobile network conditions. Under poor network
connectivity, such as when using cellular hotspot, the trans-
fer time almost doubled when compared to university WiFi.
In addition, we demonstrate that network conditions play a
critical role in cloud-based inference.

the inference execution time, which is defined as the time to
generate output labels based on input images. In Figure [9}
we plotted the average inference execution time for running
these four CNN models in three cloud servers with different
capacities. We make a few observations. First, regardless
of the cloud servers in use—whether the cloud server is a
burstable t 2 .medium that might be subject to performance
fluctuations [38] or a powerful GPU server p2.xlarge,
the simplest of the four CNN models MobileNetVvl 0.25
takes less than 50 milliseconds with up to 30% difference
between p2.xlarge and t2.medium. Second, as the CNN
models become more computation-intensive, both CPU
servers start to take more than 313.7 milliseconds to finish
in the case of Inceptionv4. Meanwhile, the GPU server
p2.xlarge was able to deliver low execution time in less
than 82 milliseconds, which is still over 2.5X faster than run-
ning the simplest CNN model MobileNetV1l 0.25 on the
MotoX mobile phone. Our measurements suggest that CNN
models with different computation complexities, in addition
to cloud servers, take different amount of execution time.
These results also demonstrate the potential of using cloud-
based inference for making inference latency and accuracy
trade-offs dynamically.

Impact of mobile network conditions. We evaluate the
end-to-end classification time when using models hosted
in edge servers with the optimized model pre-loaded. Fig-
ure (10| shows the average classification time using an edge
server in a variety of network conditions. The majority of
the classification time is network transfer time with up
to 66.7% in the cellular hotspot case. Overall, the edge-
server based classification ranges from 375ms to 600ms in
a well-provisioned t2.medium cloud server. When run-
ning the same classification task the Pixel 2 takes 536ms
with a preloaded model and is on par with edge based
inference. Mobile-based inference only delivers acceptable
performance for newer and high-end mobile devices while
edge-based inference is a viable option even under poor
network condition. CNNSelect can leverage this observation
to dynamically select inference locations.



mobile resource consumption
CPU GPU Mem Dbattery

inference mode

(%) (%) (GB) (mW)
g2.2xlarge+CPU 6.2 0.9 1.28 1561.6
g2.2xlarge+GPU 6.4 0.4 1.31 1560.2

TABLE 6: Mobile resource consumption. We measured
the mobile resource consumption when using cloud-based
inference. We also included the on-device performance from
Figure 4] as baselines.

4.2 Cloud-based Inference Resource and Energy Anal-
ysis

Table [6] shows the resource consumption of mobile device
when running the object recognition mobile application. As
a baseline, we measure the performance when the device is
idle and the screen is turned on. The CPU utilization and
power consumption is 3.17% and 1081.24 mW respectively.
Cloud-based mode consumes roughly the same amount
of CPU and 44.4% more power consumption comparing
to the baseline. However, on-device mode not only incurs
significantly higher CPU utilization (and in the case of
CNNDroid, GPU utilization as well), but also require two
times more power consumption when compared to the
baseline. In all, we can calculate the energy consumption of
different inference modes by multiplying the average infer-
ence (recognition) time by the average power consumption.
Cloud-based inference requires as low as 0.057 mWh energy
when using faster GPU computation, and on-device based
inference consumes up to 8.11 mWh.

In sum, cloud-based inference exhibits substantial bene-
fits in terms of inference response time and mobile energy
savings over on-device inference, in this case by two orders
of magnitude. This is due to more powerful processing
power, shorter durations of inference and efficient use of
network interfaces.

5 MANAGING AND SELECTING CNN MODELS

In this section, we describe our multi-models approach,
CNNSelect, to mitigating the impact of the mobile network
variations on cloud-based inference performance. CNN-
Select manages a set of CNN models that exhibit different
execution time and accuracy trade-offs, and selects the bests
CNN model for a given mobile inference request. The key
insight is that the variations of transferring the input data
for an inference request can be masked with CNN models
that take differing amounts of time to execute. When con-
sidering which CNN model to use, we assume that all CNN
models are already loaded into the memory and that CNN
model performance profiles are measured and managed by
individual inference servers. We further assume that image
preprocessing is handled in an intelligent way by the mobile
device. In Table 7} we list all the symbols used in this paper.

For a mobile inference request, we assume that develop-
ers provide the target response time that indicates how long
the end-to-end inference should take. This target time can
alternatively be expressed as Service Level Agreement be-
tween mobile developers and cloud-based inference service

providers. Without loss of generality, we refer to this target
response time as Ty;,.

Next, CNNSelect estimates the remaining time Tyyqget
that an inference request should finish executing. Tyyqget
is calculated by taking the difference between Ty, and
the network transfer time T},,,. Ty, can be estimated con-
servatively with 2 * T}, where T, denotes the time
taken to send input data from the mobile device to the
cloud-based inference server. In our application scenarios,
we could expect Tinput > Toutput given inference requests,
e.g., images, are often larger than inference responses, e.g.,
text labels. To summarize, Tpuqge: can be calculated as:
Tbudget = Tsla — 2% Tinput-

To take into account of the CNN performance profiles
getting outdated—leading to less accurate estimation of exe-
cution time, we define a threshold T}j,,eshoiq Which indicates
how uncertain we are about the model performance pro-
files. The larger the value of Tijyesnola, the more outdated
the inference performance profiles. In order to effectively
explore all potentially high-accuracy models without vio-
lating SLA, we then expand the notation of time budget
Thudget to a range Tr = [T1,Ty], where Ty = Thudget
and Ty, = Ty — Tinreshola (see Figure [11). Intuitively, Ty
represents the maximum amount of time that CNNSelect
can use for generating an inference response without risking
SLA violations. We refer to T, as the hard time limit. On
the other hand, Ty is referred to as the soft time limit and
provides CNNSelect the flexibility to explore a subset of
high-accuracy models Mg that exhibit different execution
time {T'(m)|vm € Mg}.

Currently, Tipreshold is configured by CNNSelect’s users,
e.g., mobile application developer, as any values in the range
of [0,7p], where Tp represents the expected on-device
inference time. We choose to bound Tipreshoid this way to
restrict the exploration set My and mitigate the undesir-
able behavior of starting on-device inference prematurely
when cloud-based inference can finish without violating the
SLA. However, CNNSelect could also dynamically adjust
Tihreshola based on its confidences of model performance
profiles and will be explored as part of future work.

5.1 Opportunistic Model Selection

Next, we describe in detail how CNNSelect utilizes both the
model performance profiles and the time budget range Tr
to first pick a base model, then construct a set of eligible
models Mg that is worth exploring, and last probabilisti-
cally select the model for executing the inference request.
Our three-staged algorithm is designed to gradually im-
prove our estimation of model performance profiles without
incurring additional profiling overhead. In addition, if we
are under time pressure to select models, our algorithm
could be stopped any time after the first stage and will still
select a quality model for performing the inference. In Fig-
ure[11] we provide an example walkthrough of CNNSelect.
Stage one: greedily picking the baseline model. In this
stage, CNNSelect takes all the existing models and selects a
base model m; as follows.



1(ma) + o (ma)

Symbol Meaning
Ts1as Tstart, Toudget Response time SLA, start time, and remaining name of a mobile inference request. ) (ma) + a(mg) M
T rcsiialid Confidence threshold of inference performance. i

input, Toutput, Tnw | Nework time to send inference request and response, and both. — Ty + (|71 — p(ma)| + o(ms))
Tp Expected on-device inference time. pu(ms) P ‘ '
Ty, Ty, The soft and hard time budgets. U ¥ U L
Tr, Tr The time budget and exploration ranges. #(ms) + o (ms) ]
K The total number of models. %Mm“ H Ty, — (ITy — p(ma)| + o(ms))
Mg The exploration set of models. ‘
wu(m), o(m) Average and standard deviation of historical inference time of model m.
Pr(m) Probability of model m for performing inference. : .
A(m), T(m), U(m) Accuracy,};nference time anIC]l utility OfgCNN model m. Flg 1 Walkthrough of CNNSelect.

TABLE 7: Symbols summary. Shaded symbols are specific to inference requests
from different mobile devices, while others are related to CNN models.

maximize  A(m;) )

j
subject to  u(my) +a(my) <Ty, j=1...K. (2)
p(my) —o(myj) <Tp, j=1...K. (3)

The high level idea is to select the most accurate model

Equation (1) that are likely to finish execution within speci-
fied SLA target Equation without triggering on-device
inference Equation (@). Given that cloud-based inference
execution might experience performance fluctuations that
lead to a wider inference execution distribution [39, |40,
we take into account of the standard deviation of model
inference time and only select models that satisfy both the
soft time limit 77, and the hard time limit 77;. By doing so,
the selected models are of high accuracy and are very likely
to finish execution within specified SLA. In the example
walkthrough in Figure [IT) CNNSelect will select model m3
as the base model. In scenarios where there is no base
CNN models that satisfy the constraints, e.g., variability of
mobile networks, CNNSelect chooses the CNN model with
the lowest average inference time ;(m;) in order to provide
a best-effort at SLA attainment.
Stage two: optimistically constructing the eligible model
set. To account for cloud-based inference variations, either
due to workload spikes [41] or insufficient/outdated CNN
model performance profiles, CNNSelect leverages the basic
idea of exploiting and exploration [42]. Given the base CNN
model m*, we then explore other potential CNN models
that should also be inside the exploration set Mg. To do
so, we leverage m* performance profile and construct the
exploration range Tg.

Specifically, we expand the hard time limit 77 with
u(m*) and o(m*) to construct the exploration range Tx
with an acceptable distance (|77, —p(m*)|)+o(m*) as below.

zb{

Given this, we construct the exploration CNN model set
Mg = {m | u(m) € Tg and p(m) + o(m) < Ty }. As such,
all CNN models in M satisfy our target performance while
providing CNNSelect the opportunity to exploit the trade-
offs between inference accuracy and time. In Figure[11} only
model mo and ms are marked as the members of M.
Stage three: opportunistically selecting the CNN model.
CNNSelect selects the CNN model m’ that balances the risk

) + ('), 2T, — (o) + 0 ()], i Ty, > (')
2Ty, — p(m’) + a(m'), u(m') + o(m’)], otherwise.

Here, CNNSelect has access to CNN
model performance profiles and inference
accuracy: A(mg) > A(mq) > A(ma).

of SLA violations and the exploration reward. Concretely,
we calculate the utility for each CNN model U (m) based on
its inference accuracy and the likelihood to violate response
time SLA.

Ty — (u(m) 4 o(m))
T — p(m)|

CNNSelect than calculates the selection probability
Pr(m) = U(m) and picks the m’ accordingly.

U(m) = A(m) 4)

This helps avoids choosing CNN models with lower in-
ference accuracy, wider inference time distribution, and
outdated performance profile.

5.2 Experimental Evaluation of CNNSelect

We quantify the effectiveness of CNNSelect, in dynamically
selecting the most appropriate CNN model to avoid missing
target response time while achieving good inference accu-
racy. We use a mix of experiments and simulations with
real-world CNN models. We run our experiments using an
Virginia-based Amazon EC2 p2.xlarge GPU server that
manages two retrained CNN models, MobileNetVl 0.25
and InceptionV3. After warming up the inference server,
we have our Massachusetts-based image recognition An-
droid application on MotoX (late 2017) that send inference
requests of preprocessed images (average 330KB) over cam-
pus WiFi. For each SLA target, our mobile application sends
1000 inference requests and measure both the inference ac-
curacy and end-to-end inference time. For our simulations,
we leverage a number of CNN models, summarized in
Table [5| [4, 22, |31} 43]-[46]], that expose different accuracy
and inference time trade-offs. Our simulations are seeded
with empirical measurements of CNN model execution time
and mobile network conditions. For each simulation, we
generate 10,000 inference requests with a predefined SLA
target and record the model selected by CNNSelect (and
baseline algorithms) and relevant performance metrics. We
repeat each simulation for different SLA target and network
profiles combination.

5.2.1 Prototype evaluation

In Figure we plot the percentage of inference requests
that exceed the SLA (left y-axis) and the percentage of
inference requests that are correctly classified (right y-axis)
for different SLA targets. We further annotate the figure
with two important timelines: on-device inference time with
MobileNetVl 0.25 and on-device inference time with
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Fig. 12: End-to-end performance of CNNSelect. CNNSelect
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Fig. 13: Comparison of CNNSelect to the greedy algorithm.
CNNSelect tracks the time left to the SLA target allowing it
to meet the SLA consistently when network time allows it
to at >100ms, while the greedy approaches fails to do so.
As such, CNNSelect improves effective accuracy safely as
the SLA target increases. Meanwhile, by selecting a model
probabilistically CNNSelect absorbs the network variation
better by using a diverse set of CNN models.

MobileNetV1l 1.0 (from left to right) to better illustrate
CNNSelect performance. The mobile device is connected to
our campus WiFi which has an average network time of
63ms over the course of the test.

As we can see, CNNSelect is able to gradually reduce
the percentage of SLA misses as the SLA target increases.
In particular, we start to observe reduction in the num-
ber of SLA violations and improved inference accuracy
once the SLA target is larger than 115 ms. This is due to
CNNSelect recognizing that the time budget is extremely
small and utilizing a low-latency model, MobileNetV1
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0.25. As the SLA increases further, the overall inference
accuracy begins to improve but still exhibits some variation.
The improved accuracy is due to CNNSelect identifying
the increased time budget and beginning to use the more
accurate InceptionV3 model while the continuing varia-
tion in accuracy is due to CNNSelect accounts for network
variability and occasionally chooses MobileNetVl 0.25.

Result: CNNSelect is able to adapt its model selection with
the goal to minimize SLA violations while improving inference
accuracy, even when SLA target is set to be as low as executing a
mobile-optimized model on-device.

5.2.2 Benefits over a greedy model selection

To examine CNNSelect’s ability to handle the trade-offs
between inference response time and accuracy, we compare
CNNSelect to a greedy algorithm that always chooses the
most accurate CNN model for a given SLA. In Figure [13(a)]
we plot the average end-to-end inference time (left) and
inference accuracy achieved by these two algorithms. This
figure shows that CNNSelect consistently achieves up to
42% lower inference latency, compared to greedy. Moreover,
CNNSelect can operate under a much more stringent SLA
target (~115ms) while static greedy continues to incur SLA
violations until SLA target is more than 200ms. The key
reason is because CNNSelect is able to effectively trade-off
accuracy and inference time by choosing from a diverse set
of models (see Figure [T3(b)). Consequently, CNNSelect has
an accuracy of 68% (on par to using MobileNetVl 0.75
which can take 2.9x more time running on mobile devices)
under low SLA target (~115ms), but is able to match
accuracy achieved by greedy when SLA target is higher. Note
that even though static greedy achieves up to 12% higher
accuracy, it does so by sacrificing inference latency.

In Figure we further analyze CNNSelect perfor-
mance by looking at its model usage patterns under dif-
ferent SLA targets. At very low SLA target (< 30ms), CNN-
Select aggressively chooses the fastest model MobileNetV1
0.25 since none of the managed models satisfy Equa-
tion (2) and . As the SLA target increases, CNNSelect ex-
plores more accurate but slower models than MobileNetV1
0.25. There are two key observations: (1) CNNSelect is
effective in picking the more appropriate model to increase
accuracy while staying safely within SLA target. For exam-
ple, InceptionResNetV2 is never selected by CNNSelect
because better alternatives Inceptionv3 for lower SLA
target and Inceptionv4 for higher SLA target exist. (2)
CNNSelect faithfully explores eligible models and is able to
“converge” to the most accurate model when SLA target is
sufficiently large.

Result: CNNSelect outperforms greedy with up to 43% end-
to-end latency reduction, while is able to keep up with accuracy
with SLA budget is larger than 250ms. The key reason is because
CNNSelect is able to adapt its model selection by considering both
the SLA target and network transfer time, while greedy naively
selects the most accurate model.

6 RELATED WORK

To keep up with the increasing popularity of using deep
learning within mobile applications [47]], there has been a



wide range of work on providing efficient mobile deep in-
ference. These efforts range from optimizing mobile-specific
models to improving the performance of inference serving
systems.

On-device execution. Efforts for enabling executing deep
learning models directly on mobile devices fall in two
broad categories: mobile-specific model optimizations and
redesigning mobile deep learning frameworks.

Concretely, researchers have investigated various ways
to make DNN models efficient [48]. First, post-training
optimizations such as quantization uses simpler represen-
tations of weights and bins weights to improve compress-
ibility [49, 50] allowing for reduced load time. Second, tech-
niques such as pruning [50], removing model weights with
low contributions, reducing the number of computations
needed for inference as well as model sizes. Third, redesign
of networks can also lead to improved inference time. An
early example was the mobile-specific SqueezeNet [44] and
this trend has continued with MobileNet [22]] which was de-
signed as a compact alternative to the complex InceptionV3
model [31].

To enable running models across different hardware
architectures [51], researchers have redesigned deep learn-
ing frameworks [52]-[54] with the goal of providing op-
timized runtimes. For instance TensorFlowLite [19] and
Caffe2 [13] both leverage mobile-specific optimizations that
allows deep learning models to execute smoothly on mobile
hardwares. Recently, researchers investigated system-level
optimizations for supporting multiple on-device mobile ap-
plications [55]-[57]. Our work can leverage these proposed
optimizations to further improve mobile deep inference
performance by judiciously selecting models at runtime.

Remote execution. Cloud-based solutions have demon-
strated their effectiveness in handling traditional work-
loads [58]. Code offloading [59, |60] has been widely used
to augment the performance of mobile applications with
constrained hardware resources. Due to the reliance on
network connectivity, code offloading is often done at run-
time [59]]. Determining the optimal partition of computation
graphs can be solved optimally [59] with approaches such as
Integer Linear Programming (ILP). However, these optimal
solutions fall short because they assume access to prior
performance information, such as execution time and en-
ergy [59,60] and often incur long decision time. CNNSelect
leverages the key idea of runtime computation offloading
by selecting from different deep learning models, for both
inference speed and accuracy gain.

Recently, various model serving platforms [23| [24, 61|
provides web-based services that mobile applications can
leverage. Further, researchers have started to understanding
the performance and cost trade-offs when running inference
services in the cloud [62]-[64]. These platforms are often
designed with the key focus of managing model lifecycle
from training to deployment, providing low-latency and
high-throughput serving systems, and cost-effective cloud
resource managements. These projects are beneficial to
CNNSelect as they provide infrastructure supports for host-
ing a range of models. Moreover, CNNSelect complements
these works with system and algorithm designs that gear
towards mobile applications.
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7 CONCLUSION

In this paper, we conducted comprehensive empirical mea-
surements that geared towards understanding the perfor-
mance implications of running deep learning models on
mobile devices and in the cloud. We identified a number
of key performance factors, such as mobile networks and
CNN models, and demonstrated the need of cloud-based
inference, especially for complex CNN models and older
mobile devices. Towards mitigating the impact of the mobile
network variations on cloud-based inference performance,
we proposed CNNSelect that manages a set of CNN models
and uses probabilistic-based to adapt its model selection
to the heterogeneous mobile requirements. Our evaluations
show that CNNSelect is able to transparently switch be-
tween CNN models as SLA relaxes, and that CNNSelect
improves SLA attainment by 88.5% while achieving compa-
rable accuracy compared to greedy algorithms.
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