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ABSTRACT

Deep learning (DL) models are rapidly expanding in popu-
larity in large part due to rapid innovations in model accuracy,
as well as companies’ enthusiasm in integrating deep learning
into the existing application logic. This trend will inevitably
lead to a deployment scenario, akin to the content delivery
network for web objects, where many deep learning models—
each with different popularity—run on a shared edge with
limited resources. In this paper, we set out to answer the key
question of how to manage many deep learning models at the
edge effectively. Via an empirical study based on profiling
more than twenty deep learning models and extrapolating
from an open-source Microsoft Azure workload trace, we
pinpoint a promising avenue of leveraging cheaper CPUs, rather
than commonly promoted accelerators, for edge-based deep
inference serving.

Based on our empirical insights, we formulate the DL model
management problem as a classical caching problem, which
we refer to as model-level caching. As an initial step towards
realizing model-level caching, we propose a simple cache
eviction policy, called CremeBrulee, by adapting BeladyMIN to
explicitly consider DL model-specific factors when calculating
each in-cache object’s utility. Using a small-scale testbed, we
demonstrate that CremeBrulee can achieve a 50% reduction in
memory while keeping load latency below 92% of execution
latency and less than 36% of the penalty of using a random
approach to model eviction. Further, when scaling to more
models and requests in a simulation, we demonstrate that
CremeBrulee can keep the model load delay lower than other
eviction policies that only consider workload characteristics by
up to 16.6%.

Relevant research artifacts are available at https://github.com/
cake-lab/CremeBrulee

I. INTRODUCTION

Deep learning models are exploding in popularity due to
their widespread use both in industry [2] and in consumer-
facing applications [11]. As the number of unique models and
their popularity increases, the development of techniques that
effectively host them on shared resources becomes critical.
This trend will inevitably lead to a deployment situation akin
to content delivery networks (CDNs), where hosting models
near end-users on shared resources is essential to achieve the
best performance [6]. Although numerous techniques exist for

managing static, and more recently dynamic, content in CDNs,
the complexity of deep learning models, and the requirements
of using them make model serving complex.

Deep learning models are large in size, over 4GB in
some cases [42], with complex execution graphs that need
to be constructed upon model load. As such, naive memory
management may encounter difficulties handling these models,
experiencing unexpected latency variations, and not fully
exploiting the characteristics of models. The scale of the
workload can further compound the memory management
complexity. As deep learning models proliferate, they are being
used in myriad applications that were traditionally served by
central servers or, more recently, run in serverless platforms.
Extrapolating from a serverless trace [35], we expect deep
learning models will see not only a huge number of requests
but also a wide range of popularity, with some models being
requested many orders of magnitude more often than others.
Therefore, the core problem facing the serving of deep learning
models is how to handle a large number of requests for a wide
variety of models effectively in a shared infrastructure.

To this end, we propose model-level caching where deep
learning models are objects in the cache and are kept, or
removed, from the cache based on model characteristics
and workloads. We next propose an initial step towards
a solution through an eviction policy, CremeBrulee, that
enables a basic form of model-level caching. Additionally,
we introduce a methodology for testing model-level caching
systems by creating a representative workload and a simulator.
Our methodology demonstrates the effectiveness of model-level
caching and provides a baseline for future systems.

We used an AWS-based testbed and a simulation to demon-
strate our methodology and the effectiveness of model-level
caching. We show that model-level caching can enable a trade-
off between model load latency and memory usage. Specifically,
by using CremeBrulee to manage models in our testbed, we
can decrease the required memory by 2⇥ while only incurring
a 1.92x increase in response time, due to model load latency.
Our simulation demonstrates that by explicitly considering the
penalty of loading models into memory, we can improve over
other eviction policies by reducing model load delay by up to
16.62%, and over random by up to 56.47%.

Our investigation, including the workload methodology and
the DL-aware eviction policy CremeBrulee, provides a baseline
for future model-level caching research. To summarize, we
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Fig. 1: Measurement of model latency. We show the average of
model loading, first execution, and subsequent executions measure
across 50 load-unload cycles with 10 executions per cycle for a subset
of our characterized models including our largest and smallest models.

make the following contributions.
• We demonstrate that GPU-based inference is often not

cost-effective for deep learning workloads due to deep
learning models’ popularity and resource requirements.

• We recast the deep learning model management problem
as an extension of a classical caching problem.

• We propose a model-aware policy, called CremeBrulee,
that is inspired by the BeladyMIN algorithm.

• We develop an empirical methodology for deriving the
workload to evaluate the model-level caching policies
and a baseline evaluation for future work on improving
memory-computation trade-off via model-level caching.

The remainder of this paper is structured as follows. In
Section II we will discuss deep learning models and their
challenges in more detail. Next, in Section III we will
characterize the resource demand of models and implications
of workloads. In Section IV we show the strong parallels
between it and traditional system caching problems. Drawing
on this parallel, in Section V we introduce an eviction policy,
CremeBrulee, for deep learning models as a first step towards
model-level caching and evaluate it in Section VI by introducing
a methodology for generating a realistic workload.

II. MOTIVATION AND BACKGROUND

In this section, we introduce topics that are essential to
understanding the state of deep learning serving. First, we
discuss the models themselves, including function and cost.
Next, we discuss accelerators, how they improve performance,
and why they are appealing but not always needed. Finally,
we need to discuss existing serving systems.

Deep Learning Models. The explosion of deep learning
models, both in academia [22, 38, 42] and in industry [4, 11],
has led to a need to efficiently service end-user requests. Models
are now being used both to serve core components of both user
end-devices [11] and business-oriented analytics models [2, 4].
These models are popular because they provide high accuracy
for a wide range of problems. This accuracy is the result
of leveraging extensive training resources, generally utilizing
accelerators such as GPUs [1, 12, 17] or ASICs [25, 34], and
large datasets [29, 33]. This high accuracy is related to having

100s of millions, or even billions, of weights [8, 22, 38, 42],
leading to large model sizes.

Beyond simply being large, many of these models have
several setup steps before usage due to having a complex
execution structure [22, 38, 42]. In general, loading models
consist of reading the model parameters from the disk and
setting up the execution graph. We can see in Figure 1 that the
first execution time of models is often much larger than the rest
of the executions, likely due to graph initialization operations
that must be run whenever the model is loaded. Therefore,
systems must be aware that the penalty is not simply the size
of a model.

Accelerators. Deep learning models consist of a large number
of complex calculations, such as matrix multiplication. Ac-
celerators, such as GPUs and ASICs [25, 34] can parallelize
these operations efficiently, greatly decreasing the average
latency due to increase throughput. This increased throughput is
particularly useful during training when there is ready access to
large amounts of training data. Additionally, parallel inference
can greatly benefit the popular models that need to serve a
large number of requests.

A core drawback of these accelerators is their high cost and
limited memory access. On a per-request basis, accelerators
generally offer no significant speedup but cost nearly 10⇥ more,
as we show in Section III. Further, they generally have limited
on-device memory with potentially slow access times [17]. Es-
sentially, accelerators are optimized for computation throughput
rather than serving multiple models at once.

Model Serving. DL model inference serving systems have
become an integral part of deep learning, benefiting from an
active field of development. These include developer-oriented
systems [3, 30], research-oriented systems [14, 18], corporate-
oriented solutions [2, 4], and even what can best be described
as boutique serving systems [23]. These systems aim to make it
simple and easy to deploy models that developers and end-users
can access, generally via a REST API or gRPC call. Often these
systems are optimized for throughput targeting the hosting of
a small number of extremely popular models [14, 18, 30].

However, with the increase in the number of models, and a
move towards edge-based inference [26–28], these assumptions
are no longer valid. The increasing memory pressure of hosting
many models can quickly lead to hosting issues in edge-
and fog-based systems where systems typically have limited
available memory [1]. As we will see in the next section, this
increased diversity of models and scarcity of resources drives
the optimization of memory over computation.

III. DEEP LEARNING MODEL RESOURCE USAGE

In this section, we show that CPU-based inference is
better suited to host a large number of models than GPU-
based inference. In particular, we show it has better cost-
performance and strikes a better resource balance. Our findings
are in contrast to the prevailing belief that these workloads
require GPU-based servers. By considering the relative cost of
resources in tandem with the characteristics of deep learning
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Fig. 2: Azure Trace Overview. We analyze the Azure FaaS trace [35]
to examine the distribution of the requests per second, and the
implications of this distribution on resource usage. In (2a) we bin
the number of requests per second for functions with logarithmic
bins, showing that the majority of requests have less than 1 request
per second. In (2b) we show the potential queries per second when
selecting functions from various quantiles, with the amount of RAM
used being equal to the number of quantiles. We show that the amount
of memory required increases much more rapidly than the number of
requests per second.

serving workload distributions, we see a divergence from this
traditional assumption. It is more cost-effective to host deep
learning models on CPUs than on GPUs, and doing so will have
minimal impact on model execution latency for most models.
Further, memory is the most valuable resource for hosting deep
learning models and CPUs have more cost-effective memory
access.

Our key findings are based on a close study of the Azure FaaS
workload [35] and empirical measurements of the TensorFlow
Serving framework. These findings are as follows. First, for
workloads that consist of multiple models, most inferences
are memory-bound rather than throughput-bound. Therefore it
is advantageous to have abundant memory. Second, in terms
of execution latency, CPUs are largely comparable to GPUs,
driving the conclusion that for individual inferences there is
little downside to using CPUs. Finally, the monetary cost of
CPUs is much lower than for GPUs in terms of per-unit memory.
Therefore, leveraging CPUs is generally more cost-effective
than GPUs and allows for access to a broader range of models
at a lower cost.

A. Measurement Methodology
Our analysis consists of two parts. First, we examine a deep

learning workload and draw conclusions based on the frequency
of events. Next, we characterize many deep learning models
and compare hardware used for serving them.

To assess the impact of workload characteristics, we parse
an Azure FaaS trace [35]. We use this workload instead of a
deep learning inference-specific workload as, at this time, no
such workloads exist. We believe using a FaaS workload as a
surrogate for inference is acceptable for two main reasons. First,
many FaaS workloads have significant components comprised
of requests for deep learning models [16, 23, 35]. Second,
as deep learning is added into a range of applications it
will likely augment or replace more traditional FaaS function
invocations, leading to similar invocation patterns [7, 23].

Therefore, conclusions that can be drawn from considering the
timing and distribution of events in a FaaS workload are very
likely to apply to deep learning workloads.

To characterize the real-world computational and memory
requirements of serving deep learning models, we benchmark
26 CNN models available within Keras [13] using TensorFlow
Serving [30]. For latency measurements, we ran directly on
the hardware to allow access to available accelerators and
reduce resource contention for both an AWS m5.large
CPU instance and an AWS p2.2xlarge GPU instance with
costs of $0.096/hr and $0.90/hr, respectively. To load and
unload models, we leverage the TensorFlow Serving’s feature
to request model unload/load via a configuration file. We ran
models within a docker container for memory measurements
by measuring the delta in memory usage across each load,
inference, and unload action. This delta-based approach allows
us to consider the impact of each step, isolating the usage as
much as possible.

B. Computational and Memory Usage Disparity
Through interpolating Azure’s FaaS workload [35] for deep

learning serving, we conclude that models can experience a
wide distribution of request rates and require more memory
than computation. Although some models have nearly 1000
requests per second, more than 99% of models are used less
than once per second, as we see in Figure 2a. Further, over 97%
of models are used less than once every 10 seconds. Based
on what we will observe in the next section, these models
are idle more often than they are in use, indicating that the
vast majority of models could be unloaded to reduce memory
usage. Overall, we see high memory consumption compared
to computational usage, as shown in Figure 2b.

Commonly in inference serving, parallelism is used to
increase throughput [8, 14, 30, 32], but we see that few models
have sufficient throughput demand to take advantage of this
parallelism. In Figure 2a we show the popularity of function
calls in our trace by plotting the average usage per second
broken into 100 buckets on a log scale. It can be seen that
this distribution has an extremely long-tail distribution with
the majority of functions are used less than once per second,
and only 0.63% of functions being called more than once per
second, and only 2.35% are called once every 10 seconds.
Therefore, the majority of inferences would consist of a single
request, removing the benefit of parallelism.

Such workload characteristics have ramifications for resource
usage as well, as we show in Figure 2b, which shows potential
RAM usage based on some simple assumptions. We selected
functions from bins grouped by quantile of popularity, with the
number of bins ranging from 1 to 200. We then summed and
calculated the number of requests per second for each selection
of functions while assuming each function required 1GB of
memory. We repeated this process 1000 times and averaged
the requests per second. We see that even as the memory usage
increases to 200GB, the typical number of requests stays below
20 requests per second. Therefore, to get the equivalent number
of requests as benchmarks target [31], it would be necessary
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Fig. 3: Latency and cost for 26 models on m5.large (CPU) and

p2.xlarge (GPU) instances. We observe that while the CPU-based
instance can have longer execution and load latencies they are generally
on the same order of magnitude and it has a greatly reduced cost
when compared to its GPU-based counterpart. While a GPU is better
for high throughput operations, a CPU is much more cost-effective
for less popular models, without sacrificing latency.

to host 200 individual models, making it unlikely that any will
be computationally saturated.

C. Load and Execution Latency Penalty
We see in Figure 3a that overall execution latencies on

both CPUs and GPUs are of approximately the same order
of magnitude. This result indicates that both CPU and GPU
can work equally well when serving inference workloads that
largely exhibit low throughput requirements. While CPUs see a
small number of outlier latencies, particularly for model loads,
the majority of models have largely similar performance to
GPU-based measurements. Overall, so long as unnecessary
model loads are avoided, the latency differences are generally
small.

D. Load and Execution Monetary Cost
Leveraging CPUs instead of GPUs can decrease the cost of

hosting deep learning models, as we show in Figure 3b, even
while maintaining similar execution and load latency. This is
due to the much lower costs of CPUs, which is roughly 10⇥
less in the case of our m5.large and p2.xlarge instance.
Loading a model on a CPU-based instance costs approximately
the same as executing a model on a GPU-based instance,
despite being a much longer operation. Therefore, when using
CPU-based systems, we can execute for a much lower cost
than GPU-based systems, and the model loading also incurs
relatively lower costs.

The cost difference between CPU and CPU instances extends
to memory as well. GPU memory is 6.6⇥ more expensive per
GB/hr than CPU memory, and even the system memory of
GPU-based systems is 1.2⇥ more expensive. The cost disparity
demonstrates that CPU-based systems are much more cost-
effective for memory operations and thus implies that CPU-
based systems are much more effective when hosting a large
range of models. Note, the cost of memory in a FaaS system
can be lower, but extra costs quickly grow, especially with a
large workload [15], thereby making it inappropriate for our
use case.

E. Key Takeaways
Our empirical characterization demonstrates the untapped

potential of leveraging CPU as a cost-effective way for serving
a large number of deep learning models with various popularity.
We summarize our key takeaways.

Takeaway 1: It is often unnecessary to keep most models in
the memory, given their usage patterns. The slowest CPU-based
model execution we saw was under 4s, while more than 97% of
functions were requested less than every 10s. The implication
is that for 97% of models, over half of their in-memory time
is spent idle.

Takeaway 2: When hosting more models, the vast majority
will likely be unpopular, leading to a much higher memory
demand than computational demand. A few models, as seen
in Figure 2a are extremely popular and could benefit from
dedicated accelerators, but most functions are much less
commonly invoked, and thus consuming memory, but not
computational, resources.

Takeaway 3: The monetary cost of keeping models in memory
is non-negligible and is more when using accelerators than
when using CPU-based instances. The cost of memory on a
GPU is roughly 6.6⇥ more expensive than system memory in
a CPU-based system. Therefore, keeping uncommonly used
models in GPU memory is expensive, and CPUs are a much
more cost-effective option.

Putting all of this together, we see that CPU-based inference
is cost-effective, does not introduce undue latency increases,
and allows for removing unused models at a low cost.

IV. THE MODEL-LEVEL CACHING PROBLEM

We next formulate this deep learning model management
problem as a caching problem, which we refer to as model-
level caching, and focus on designing and evaluating deep
learning-aware eviction policies. In general, for model-level
caching, we consider each deep learning model as a cacheable
object. In this paper, we specifically focus on a subset of this
problem, determining which in-memory model(s) to evict to
serve incoming model inference requests. Similar to traditional
OS-level page caches, our goal when designing model eviction
policies is to minimize the cache miss penalty—the penalty
incurred when an inference request asks to run on a model
that is not currently in the memory. Unlike page caches with
homogeneous pages, it is non-trivial to quantify the cache miss
penalty for model-level caching as deep learning models are
heterogeneous both in terms of in-memory size and model load
and preparation time.

At a given time, we assume the need to manage a set of
n deep learning models M = {m0, . . . ,mn} for serving end-
user inference requests. We denote the size of each model by
|m|, and the size of a set of models as the sum of the size
its constituent models, e.g. ⌃m2m|m| = |M|1. Further, we
assume access to a cache of size G and that only a proper

1Note, more fine-grained caching, such as per-layer approaches, could enable
it to be the case that ⌃m2m|m| > |M| but this is considered future work.
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TABLE I: Tracing Eviction Decisions We show the eviction
decisions made by BeladyMIN and CremeBrulee-oracle given the
same set of input requests. Each model has a penalty equal to one
more than its number (e.g. model 0 has cost 1). We see that although
they have the same number of cache misses CremeBrulee-oracle has
a lower penalty.

BeladyMIN CremeBrulee-oracle

Model Hit/
Miss? Evict Resulting

Cache Cost Hit/
Miss? Evict Resulting

Cache Cost

0 Miss 0 1 Miss 0 1
1 Miss 0,1 2 Miss 0,1 2
2 Miss 0 1,2 3 Miss 0 1,2 3
1 Hit 1,2 0 Hit 1,2 0
0 Miss 1 0,2 1 Miss 1 0,2 1
2 Hit 0,2 0 Hit 0,2 0
1 Miss 2 0,1 2 Miss 0 1,2 2
0 Hit 0,1 0 Miss 1 0,2 1
2 Miss 1 0,2 3 Hit 0,2 0
0 Hit 0,2 0 Hit 0,2 0
2 Hit 0,2 0 Hit 0,2 0
1 Miss 2 0,1 2 Miss 0 1,2 2
0 Hit 0,1 0 Miss 1 0,2 1
2 Miss 0 1,2 3 Hit 0,2 0

Total 8 Misses - - 17 8 Misses - - 13

subset of models C ( M can be in-memory at once. For each
incoming inference request specifying a model mi, our goal is
to pick an eviction set E ⇢ C such that G � |C�E| � |mi|,
i.e., to evict enough models to make room for the recently
requested mi. Further note, in a page cache, since pages are
all the same size, the eviction set E will consist of one page;
but in model caching, it may also consist of either no models
or multiple models.

We break the model eviction problem into two subproblems:
(i) how to quantify the utility of cached models? Unlike page
caches where pages utility solely depends on the future access
pattern [5], we will need to consider additional factors for
model-level caching as described in Section V-A. (ii) how to
form the eviction set E based on model utilities? Unlike page
caches where pages are of the same size and the eviction is
always one-to-one (one page in and one page out), we will
need to consider a bin-packing-equivalent problem as described
in Section V-B. For simplicity, we do not consider pre-fetching
models as the success often hinges on the inherent workload
locality and accurate workload prediction.

V. MODEL-LEVEL CACHE EVICTION POLICIES

In this section, we introduce a deep-learning model aware
eviction policy called CremeBrulee, which follows a similar
intuition as BeladyMIN [5]—a page replacement algorithm.
Like paging, our model-level caching requires cachable objects
(i.e., models) to be present in the memory before execution.
CremeBrulee accounts for both the cache access pattern and
the heterogeneous cache miss penalty in determining the model
utility—amortizing the cache miss penalty across the time the
model is out of the cache. In essence, CremeBrulee considers
the utility of a model as the opportunity cost as if it were
not removed by choosing to evict in-memory models with a
lower amortized penalty (i.e., lower utility) to make room to
service incoming inference requests. Intuitively, the sooner a
model is requested again, the less time over which we can
spread the cache miss penalty and the higher the utility. We

refer to CremeBrulee as a penalty-aware eviction policy since
it considers the penalty of having to reload a model.

A. Model Utility Calculation
Our CremeBrulee eviction policy calculates model utility as:

utility(m) =
penalty(m)

|m| · 1

B(m)
=

penalty(m)

|m| ·B(m)
(1)

where penalty(m) denotes the cache miss penalty and B(m)
(often referred to as Belady boundary) is the number of requests
until the model m is next requested. We chose a cache miss
penalty, penalty(m) based on model load time based on
empirical observations. Equation 1 thus balances the need to
simultaneously reduce the number of model reloads, through
the use of B(m), and to keep high penalty but small models in
the cache, via penalty(m). This equation allows us to compare
utility to determine eviction priority.

The key insight in designing CremeBrulee is that when a
model is removed from the cache it will need to be reloaded
at a future point. By considering the effect of amortizing this
cache miss penalty across the time the model is out of cache,
and thus the time during which it would afford cache space, we
have a uniform metric to compare different models. Further, we
can see that this has two important and useful properties. First,
for a given model m, the value utility(m) is monotonically
increasing until the next usage. As such, if at the current
time step t0 the utility of model m1 is utility(t0,m1), then
for any future time step tn less than the next usage it will
be the case that utility(t0,m1) < utility(tn,m1). Further,
for any other model, m2, if utility(t0,m1) < utility(t0,m2)
then utility(tn,m1) < utility(tn,m2) for all tn until one of
the models is next used. Therefore, we know that the model
with the lowest utility is the best available option to remove.
Second, in the case of homogeneous models, penalties and
sizes utility(m) can be reduced to the original BeladyMIN.

Table I presents the step-by-step caching states for a
workload consisting of 13 requests using BeladyMIN and
CremeBrulee-oracle. Recall that both CremeBrulee-oracle and
BeladyMIN assume the knowledge of future inference workload.
We see that each algorithm has a total of 8 misses, 3 of
which are compulsory misses due to the cold start. However,
CremeBrulee-oracle has a lower overall penalty, thanks to its
preference to remove models with low cache miss penalty.

In lieu of a priori knowledge of upcoming requests for
calculation of the Belady boundary B(m), we leverage the
inference request history of each model to predict the next
request arrival. Specifically, for each model m, we maintain its
average request rate �m and estimate B(m) ⇡ B0(m) = 1

�m
.

Such approximation is reasonable for inference workloads that
follow a Poisson distribution. We use CremeBrulee-oracle for
establishing an upper bound performance in Section VI.

B. Model Eviction Set
To build the eviction set E we want to select the set of

models that has the minimum utility. In general, this should be
done by exhaustively testing all potential caches that would free
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Fig. 4: Overview of evaluation testbed. Our testbed consists of a
python script that invokes a Tensorflow Serving Docker image and
controls which models it has loaded. As requests enter they are put
in an internal queue. When a request reaches the head of the queue if
the requested model is loaded (e.g. M1 and Mn), then it is forwarded
for execution. If the model is not loaded (e.g. M2), then space will
be freed to load the requested model. This load incurs some delay in
the critical path of the model execution, the model load delay, which
we report as a key metric. This eviction and loading is handled by
the eviction policy, of which CremeBrulee is an example.

enough space to admit the new model. However, in practice,
this is prohibitively expensive due to the number of models in
the cache. Therefore we iteratively build our eviction set by
selecting the model with the lowest utility from the cache and
adding it to the potential eviction set. Once we have constructed
an eviction set in this manner, we sort the models by decreasing
size to remove the largest models first, in case this reduces the
number of models removed.

VI. EVALUATION

In this section, we first present our methodology in deriving
the Azure FaaS workload trace [35] to evaluate the model-
level caching policies. We use this methodology in a testbed
(Section VI-B) and a simulation (Section VI-C) for evaluating
CremeBrulee. We demonstrate that our CremeBrulee cache
eviction policy achieves a 16.6% reduction over a non-penalty-
aware eviction policy, and can smoothly reduce memory by
up to half in our testbed.

A. Methodology
We consider our methodology in two parts. First, we consider

the workload trace generation to aid other researchers in
leveraging it as a deep learning trace. Next, we consider the
specific experiments which utilize the workload.

1) Workload trace generation: In this section, we propose
a methodology for generating a deep learning model inference
trace from an existing Azure FaaS trace. As we have discussed
previously in Section III-A, no publicly available deep learning-
oriented traces exist, so we use a FaaS trace to simulate one.
The Azure FaaS trace consists of per-minute function invocation
counts and function statistics. We used a three-step process to
generate a request-level workload: (i) generate a list of request
events to represent when functions were invoked, (ii) connect
these requests to known deep learning model statistics, (iii)
uniformly downsample them to appropriate levels. The code for
producing deep learning inference serving appropriate traces,

as well as benchmarking models, can be found in our GitHub
repository [10].

Event Generation. To generate the request-level workload, we
counted the number of invocations of each function and equally
distributed them in a random order across the minute. To best
match the characteristics that make FaaS workloads to deep
learning workloads, we only used functions triggered by HTTP
requests and thus likely to be invoked by users. This filtering
preserved the original population demographics, so models
that were originally popular remained popular. In addition,
we removed functions that were above the 90th quantile of
popularity, approximately once per minute or more, and one-hit-
wonders. We chose to do this because extremely popular models
should be optimized for throughput on dedicated hardware
accelerators. At the same time, it is hard to quantify the caching
benefit for one-hit-wonders.

Model Association. To associate models with specific events
in the generated trace, we need to pair function invocations
with model characteristics. The original characteristics of the
function calls (e.g., the memory and latency provided with the
Azure trace) are insufficient both because these would not be
accurate to deep learning models and because, in many cases,
they were incomplete. Therefore, for each function, we want
to select the characteristics of one of our 26 deep learning
models, profiled in Section III. Note that new models can be
characterized but care should be taken to use the same class
of machines.

For each function invocation in the event trace, we pick
a model in one of four ways. First, a uniform approach in
which we randomly selected a model. Second, a round-robin
approach where models were chosen in a round-robin manner
in order of decreasing load latency. Third, a quantile approach
which selected models based on the popularity quantile of a
function. This lead to more popular functions being associated
with models that had high load latency. This allowed us to
introduce a strong correlation between popularity and reload
penalty. Fourth, quantile-r reverses this correlation.

Finally, we either renamed the invocations to use real names
or distinct names. For testbed evaluation, real names are
appropriate as they use the names of the models, and thus
in our testbed use only the 26 real models. For simulations,
distinct names are appropriate, leading to up to 30440 distinct
models to simulate caching.

2) Experiment Setup: Our experiments consist of two main
parts: a testbed and a simulation. These allow us to demonstrate
the possibility of model-level caching and how well our
proposed eviction policies scale, respectively.

Our testbed consists of a python wrapper around a Tensor-
Flow Serving Docker image. An overview of our testbed is
shown in Figure 4. The python wrapper communicates model
changes to Tensorflow Serving through a model configuration
file. When a request for a model in the cache arrives, it is
forwarded for execution. When a request is received for a
model that is not in the cache, our testbed determines the
necessary cache modifications and alerts TFS to the changes.
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TABLE II: Workload Statistics We test all four model correlations
in our testbed and three of them in our simulation (the fourth, round-
robin is similar enough to uniform to exclude). The key difference
between our testbed and simulation workloads is that the testbed
utilizes our 26 real models while our simulation uses 2408 unique
models based on our real models.

Workload
Correlation

(Pop ⇠ Cost)

# Events

(Testbed)

Memory

(Testbed)

# Events

(Simulation)

Memory

(Simulation)

uniform ⇡ 0 1000 21.7GB – –
round-robin ⇡ 0 1000 21.7GB – –
quantiles ⇡ 1 1000 21.7GB – –
quantiles-r ⇡ �1 1000 21.7GB 16765 2.862GB

We ran our testbed on an AWS m5.2xlarge instance. This
instance was chosen as model characteristics should be similar
across all AWS m5 type instances, and this is the smallest that
can load all models into memory at once. We can emulate a
baseline TFS installation by loading all models at once since
no cache misses will occur.

Our testbed processed requests in a single-threaded manner
to ensure that we could clearly delineate between measurements
and reduce interference. This lead to increased overhead, which
we demarcate in our results, that would not be present in a real-
world implementation. Before testing, we loaded all models
into memory in a random order, allowing our eviction policy
to remove models as needed.

For our simulation, we built a custom trace-driven event-
based simulator in python that is modeled on our testbed. We
use the same module for both simulator and testbed to make
eviction decisions, ensuring consistency across our tests. This
simulation can be used as a basis for testing caching techniques,
as well as extended to accommodate other workloads and
models [10].

Workload Summary. For our testbed, we used 1000 requests
over the course of an hour. This represents uniform downsam-
pling of our requests to accommodate the machine processing
power. These 1000 requests are distributed among our 26
real models with 4 different correlations to allow us to test a
range of workload variations. Since we used real models, all
variations would require 21.7GB to load concurrently. For our
simulation, we used an hour of requests from our workload
downsampled by 10%, consisting of 16765 requests for 2408
models. Since we are no longer bound by our single-threaded
execution this allows us to consider the impact of many more
requests over the course of an hour. Similar to our testbed,
we used different workload correlations that would require
approximately 2.9TB of memory to load concurrently. We
summarize this information in Table II.

Key Metrics. We report two main metrics: cache size and
model load delay. These two metrics represent the main trade-
offs in our system, where smaller cache sizes mean more
models need to be reloaded. Cache size is the size of the cache
we are using in a given test. It allows us to see how much
of a reduction in memory footprint we can make for a given
increase in model load delay. Model load delay is the amount
of time dedicated to loading models on the critical path for

an inference. It is calculated as the load time for a model
multiplied by the model-specific miss rate. For eviction policy
evaluation, this is the most relevant metric since this is the
delay that would be directly passed on to end-users. This is
analogous to the average memory access time, although instead
of measuring the impact of different cache levels, we measure
the impact of diverse load and setup times.

Alternative Eviction Policies. To demonstrate the impact of
our penalty- and size-aware eviction policies CremeBrulee and
CremeBrulee-oracle to three other policies. First, we compare
CremeBrulee to popularity, where the most popular model
is selected since it is the impact of removing the penalty
and size weighting. Next, we compare CremeBrulee-oracle to
BeladyMIN, testing the inclusion of penalty when given future
knowledge. Finally, we compare each set of policies to Random
to demonstrate the improvements of informed selection.

B. Testbed
We first demonstrate the effectiveness of model-level caching

in a testbed and the effects of different workload characteristics.
1) Impact of Model Caching: To examine the impact of

model-level caching we use our CremeBrulee-oracle eviction
policy compared to keeping all models loaded into memory.
Keeping all models in memory requires 22GB of memory
and is equivalent to baseline TensorFlow Serving. We saw
that our testbed added overhead to request routing, decision
making, and queueing delay, all of which we report but do
not consider. The first two of these could be reduced by using
a more optimized implementation. The latter is due to using
single-threaded execution to best expose the impact of model
caching, and thus would be expected to be much less in a
multi-threaded implementation.

For each of the four workloads discussed in Section VI-A1
we tested with cache sizes ranging from 11GB to 22GB, the
results of which are shown in Figures 5 and 6. We see that
in many of our workloads at many cache sizes, the largest
component of the overall latency is execution time. In fact,
we observe that in workloads with correlation, such as we see
in Figures 5c and 5d, it comprises the largest component
at all cache sizes, at all times comprising 6.0% more of
the overall execution time than the model load time. This
strongly indicates that when introducing model-level caching
in correlated workloads, the impact of model-loading is less
than the impact of execution.

In Figures 5a and 5b we see that the model load time
does overtake the model execution time. This increase relative
to correlated workloads shows that when the popularity and
penalty of models are uncorrelated, it is much more difficult to
accurately perform caching. The worst case is in a round-robin
workload where the model loading time contributes 13.5%
more to the overall latency than the execution time.

Considering overall latency in Figure 6 we see that different
workloads have significantly different results. Most dramati-
cally, uniform and quantiles-r are the high- and low- points,
respectively. The core of this difference is the correlation be-
tween model popularity and penalty. The quantiles-r workload
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Fig. 5: Average component parts of overall latency at different testbed cache sizes. We show the impact of 1 hour of requests with
various correlations between functions and models by the per-request average of components of the overall latency. At large cache sizes, the
majority of the overall latency is dedicated to execution latency in all cases. As the cache size decreases from 22GB we see that load time
rises from 0 to become a significant factor in non-correlated workloads. Similarly, we see that queue time increases as requests need to wait
for the loading of models that arrive ahead of them, a byproduct of a single-threaded design.

11 12 13 14 15 16 17 18 19 20 21 22
Cache 6Lze (GB)

0

1

2

3

4

5

6

2
ve

Ua
OO 

La
te

Qc
y 

(s
)

8QLfRUm
5RuQG5RbLQ
4uaQtLOes
4uaQtLOes-U

Fig. 6: Comparison of overall latency of different workloads in

testbed. When varying the size of the cache in the testbed from
16GB to 22GB we show the variation in how different workloads and
their overall latency.

consists of models that are high-popularity and low-penality,
leading both to low execution latency and low penalty on
misses for the most popular models. Meanwhile, the uniform
workload has an average execution latency, as shown at cache
size of 22GB, and is more difficult to determine the best models
to keep in the cache. However, even with this difficulty, it can
reduce the cache size significantly with minimal increase.

We can therefore conclude that model-level caching is
viable in real-world applications. In the best case where model
penalties are correlated with popularity, either positively or
negatively, it can keep the model load time below the execution
time of models while reducing the cache size in half. Even in
the worst case, where model penalties are randomly associated
with their popularity, it can still improve resource management.
We expect the former case to be more likely, as these high-cost
models are typically the more accurate, and thus can conclude
that model caching would be quite effective in the real world.

2) Comparison of caching algorithms: We next turn our
attention to the importance of caching policies in the real-world
testbed. Previously we used our CremeBrulee-oracle policy to
examine how well we could perform model-level caching. To
demonstrate the difference that the correct caching algorithm
can make, we next compare it to CremeBrulee and random
eviction policies. To do so, we used our testbed and a uniform
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Fig. 7: Avg. Model Load Delay of cache eviction policies in testbed.

When varying the size of the cache in the testbed from 16GB to 21GB
we show the variation in how different eviction policies affect the
queue delay. Measured model performance information was given to
all algorithms, but only CremeBrulee-oracle knew the future workload.

model correlation to measure the impact of these different
eviction policies. We show the results in Figure 7.

At all points, CremeBrulee-oracle outperforms the two
alternative algorithms, as we see in Figure 7. This makes sense
as it has foreknowledge of the upcoming requests and thus can
more accurately select which models to evict. Even without
knowledge of upcoming requests CremeBrulee performs well,
outperforming random handily. This is due to being aware of
the penalty of reloading models, as we can see in Figure 7b
where high-cost models are more likely to be kept in memory.

C. Simulation

A key component of a deep learning inference workload
is the number of models that we expect to host. While in
the previous test, we demonstrated that we could effectively
cache real models, real-world deployments would be much
larger than our testbed, with many more models and much
greater resources. Therefore, we use a simulation to compare
the impact of penalty-aware eviction policies while scaling to
many thousands of models.

For this simulation, we used a quantiles-r workload, which
has the most popular models but also has the highest penalty.
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Fig. 8: Comparison of cache eviction policies in simulation on

quantiles-r. We show the impact of different eviction policies in
simulation with cache sizes ranging from 4GB to 2048GB by powers
of 2. We see that penalty-aware eviction policies, namely CremeBrulee,
outperform policies that only consider time until next usage.

This has two effects. First, it forces eviction policies that are
penalty-aware to choose between popular and costly models
when evicting models. Second, for policies that do not consider
reload penalty, it removes any correlation that they may have
relied on for other workloads.

We see in Figure 8a that at all cache sizes CremeBrulee
outperforms popularity. This is especially apparent at lower
cache sizes when CremeBrulee is markedly lower than the
alternative algorithms. At 128GB CremeBrulee is 16.62%
better than popularity, with an average improvement of 7.6%.
This good performance is due to CremeBrulee being aware of
the trade-offs between penalty and popularity and prioritizing
models that demonstrate both. We observe that popularity
actually performs worse than random at many cache sizes.
This is due to its difficulty in selecting models when it is only
aware of one component of the overall load time. Instead, by
considering penalties of reloading, CremeBrulee achieves better
performance.

In Figure 8b we see similar effects when we have access
to future knowledge where we see that CremeBrulee-oracle
improves over BeladyMIN at all points. For example, at a cache
size of 128GB, we see that CremeBrulee-oracle improves over
its non-penalty-aware alternative by 12.15% and an overall
average improvement of 6.19%. Further, we see that both oracle
and non-oracle versions perform much better than random.
CremeBrulee improves performance over random by up to
36.34%, while CremeBrulee-oracle improves performance by
up to 56.47%.

Therefore, we see that making eviction policies penalty-and
size-aware can dramatically improve performance over policies
that don’t consider this. This can lead to a large decrease in
model-load time.

VII. DISCUSSION

The ability to efficiently serve and manage deep learning
models requires rethinking and adapting existing resource
management techniques. In this paper, we characterize the need
and evaluate the benefit of employing model-level caching—an
essential aspect in trading-off resource utilization and inference

performance. Other orthogonal avenues such as redesigning
deep learning models, heterogeneous hardware optimization
are left for future work. Below, we discuss potential directions
one could pursue to further improve model-level caching.

When designing our eviction policy CremeBrulee, we focus
on exponentially distributed workloads—a pattern that is widely
observed for web requests [9]. However, real-world deep
learning inference workloads may display different access
patterns. Access to real-world inference workloads may allow
for accurate characterization and modeling to provide insights
for designing model-level caching policies. With access to real-
world workloads, one potential approach is to using ML-based
predictors such as LSTM models [40] and other deep learning
models [37]. In conjunction, one could also investigate pre-
fetching policies to mitigate the high cache miss penalty [24].
On a different aspect, one can also consider beyond CPU-
based caching, especially with the increasingly heterogeneous
hardware deployment at data centers. However, today, con-
currently running models on the same GPU device still faces
multiple challenges, including hard-to-predict performance and
high context switch overhead [17, 32]. Designing suitable deep
learning specific mechanisms can further promote the caching
policy design space.

VIII. RELATED WORKS

Characterization of Deep Learning Models. By analyzing
the performance of deep learning models, the execution latency
can be reduced. Some works [12, 17] approach this by propos-
ing alternative execution patterns that improve performance.
Others, such as Neurosurgeon [26] use characterizations of mod-
els to make decisions about how to partially execute models on-
device, reducing response latency. Still other approaches use the
advances to serve models with higher efficiency [3, 14, 18, 30].
In contrast, our work compares the use of these accelerators to
general-purpose hardware in an emerging scenario where many
deep learning models share the same underlying hardware.

CPU-Based Inference. Prior work has examined the potential
of using CPUs for inference as an alternative to GPU-based
serving. Industry papers [21, 36] report that they often use
CPUs in practice due to their reduced cost compared to
accelerators, which are more advantageous for training. Another
use of CPUs is found in DeepCPU [41], where the authors
leverage them to serve RNNs, which are difficult to serve with
accelerators. Our work concretizes that CPU-based inference is
lower cost compared to using GPUS, especially when serving
a wide range of models where memory access is critical.

Caching Policies. Caching policies are widely used in systems,
such as page caches [5], content delivery networks [6], and
FaaS container caches [16, 37], with the key goal of improving
performance. For example, FaaSCache investigates the effec-
tiveness of a classic greedy-dual caching policy in container
management [16]. Meanwhile, AdaptSize [6] considers a
size-based probabilistic approach on cache admittance in a
CDN. Because our approach requires loading models before
execution, every model must be admitted and is thus based on
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BeladyMIN [5] which evicts system pages from the cache, as
opposed to content caching systems, which can serve objects
without them entering the cache. Unlike page caching where
managed in-memory objects are of the same size, in our
work, we consider the heterogeneity of the deep learning
models when devising the utility function—used as a basis
for evicting models. For mobile-based inference, both results
caching [19, 39] and memory deduplication [20] have been
proposed to speed up inference execution. However, these
approaches rely on similar inputs and data pipelines, which
becomes increasingly unlikely as the number of unique end-
users increases.

IX. CONCLUSION

In this paper, we looked at how to effectively manage
deep learning models—each with different popularity—at the
edge. We argued that with the unprecedented popularity of DL
models, developers/companies who wish to embed DL models
to their existing applications can benefit from having access
to deployment solutions, similar to what is being provided
in today’s content delivery network for web objects. In other
words, we envision a deep-learning serving infrastructure where
many models can share the underlying hardware resource,
in a cost-effective and performant manner. Designing and
implementing such infrastructures require innovations in many
aspects, including DL-specific hardware support, DL serving
frameworks, and DL-aware resource management policies.

We took the first step toward this vision and tackled the
challenges in multiple aspects. We first demonstrated that
when faced with a large number of models to host, serving
models with CPUs, rather than GPUs, is both more cost-
efficient and better utilization of resources. To address the
lack of real-world traces problem for evaluating the model-
level caching policies, we developed an empirical methodology
for deriving the workload from an open-source FaaS trace. We
proposed a simple cache eviction policy called CremeBrulee,
and to understand its effectiveness, we further used the above-
mentioned trace to compare its performance to several baselines.
In a testbed, we saw a reduction in memory usage by half with
a modest increase in model load delay; in simulation, we saw
a reduction in model load delay by 36.34% over non-penalty
aware eviction policies.
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