
Interfaces and Abstract
Classes in Java

1

What we covered last class
• Introduction to classes

• Represent specific objects
• Methods describe interactions
• Inheritance allows for subclassing

• Discussion of access modifiers
• public - open to all
• private - open to object
• protected - open to subclasses

2

Classes from Last Class
• class Being {

 private String _name;
 private String _address;
}

• class Pet extends Being {
 private Being _owner;
 private Image _profilePicture;
 private Date[] _history;
}

• class Date {
 private Time _time;
 private Image _snapshot;
 private String _description;
}

3

Running Examples from Last
Class

4

History of past dates

10/21/2021 Skiing @ A-Basin

Climbing @ Golden Cliffs

Movie in Denver

10/20/2021

10/20/2021

Who When Where

…

• PetDate.net a website for tracking time you spent
with your, or a friend’s pet

http://PetDate.net

Interfaces

5

History of past dates
• PetDate.net allows users to look at their history of

past dates, e.g.:

6

History of past dates

10/21/2021 Skiing @ A-Basin

Climbing @ Golden Cliffs

Movie in Denver

10/20/2021

10/20/2021

Who When Where

…

http://PetDate.net

List of new members
• It also allows users to search through new

PetDate.net pets who recently been added:

7

Newly joined members

21 Leonardo

Matt

Humphrey

29

27

Pic Age Name

…

http://PetDate.net

Modeling problem
• We want to be able to call:

• final ListBox dateListBox = new ListBox();
dateListBox.addItem(dateWithMike);
dateListBox.addItem(dateWithFrank);
dateListBox.addItem(dateWithHairy);

8

History of past dates

10/21/2021 Skiing @ A-Basin

Climbing @ Golden Cliffs

Movie in Denver

10/20/2021

10/20/2021

Who When Where

…

Modeling problem
• But we also want to be able to call:

• final ListBox petsListBox = new ListBox();
petsListBox.addItem(leonardo);
petsListBox.addItem(matt);
petsListBox.addItem(humphrey);

9

Who When Where

…

Newly joined members

21 Leonardo

Matt

Humphrey

29

27

Pic Age Name

…

Modeling problem
• Suppose we want to create a general GUI

component ListBox that can display a list of
“things” that contain a picture and a description.

• class ListBox {
 public void addItem (Listable item) {
 drawImage(item.getImage());
 drawText(item.getDescription());
 }
}

• What type should go in the blank so that we can
add both pets and dates?

10

?

Modeling problem
• Strategy 1 — create a common ancestor class:

• class ListableObject {
 public Image getImage () { ... }
 public String getDescription () { ... }
}

• class Pet extends ListableObject {
 …
}

• class Date extends ListableObject {
 …
}

11

Modeling problem
• We could then define addItem to take an item of

type ListableObject.

• class ListBox {
 public void addItem (ListableObject item) {
 ...
 }
}

• Problem: cannot add an item from a class B (Pet)
that already has a parent class A (Being).

12

A

B

Modeling problem
• Using the class hierarchy is the wrong tool for this

job.

• All we want is enforce that every object we add to
the ListBox must have a picture and a
description.

• Other than that, we don’t care what kind of object
it is.

13

Java interfaces
• Strategy 2: use Java interfaces.

• An interface is a collection of methods signatures
& descriptions of what they do. (Signature: a
method’s name, parameters, and return type.)

• Interfaces are a more flexible kind of type than
classes.

• Interfaces allow you to specify a set of methods
that an object must support.

14

Java interface: definition
• We can create a Java interface as follows:

• /**
 * Interface for any object that wants to be shown inside
 * a ListBox. It must have an image and a description.
 */
interface Listable {
 /**
 * Returns the image associated with this item
 */
 public Image getImage ();

 /**
 * Returns the description associated with this item
 */
 public String getDescription ();
}

• Interfaces contain method names, parameters, and return types,
but no bodies.

15

Java interface: definition
• We can create a Java interface as follows:

• /**
 * Interface for any object that wants to be shown inside
 * a ListBox. It must have an image and a description.
 */
interface Listable {
 /**
 * Returns the image associated with this item
 */
 public Image getImage ();

 /**
 * Returns the description associated with this item
 */
 public String getDescription ();
}

• Methods with no bodies are called abstract.

16

Java interface: implementation
• Before we can use an interface, we must implement it.

• We can implement the interface in Pet:
• class Pet extends Being implements Listable {

 private Image _profilePic;
 ...
 public Image getImage () {
 return _profilePic;
 }
 public String getDescription () {
 return getName(); // from superclass (Being)
 }
}

• Implementing an interface: create a body for every
method in the interface.

17

Java interface: implementation
• Before we can use an interface, we must implement it.

• We also implement the interface in Date:
• class Date implements Listable {

 private Image _snapshot;
 private String _whatHappened;

 public Image getImage () {
 return _snapshot;
 }
 public String getDescription () {
 return _whatHappened;
 }
}

• Implementing an interface: create a body for every
method in the interface.

18

Implementing an interface
• If any method body is missing, then it won’t compile:

• class Date implements Listable {
 private Image _snapshot;
 private String _whatHappened;

 // No implementation of getImage()

 public String getDescription () {
 return _whatHappened;
 }
}

• Date.java:1: error: Date is not abstract and
does not override abstract method getImage() in
Listable

19

Modeling problem

• Using the Listable interface, we can enforce that
every item supports getImage() and
getDescription() methods, without requiring a
specific parent class.

• class ListBox {
 public void addItem (Listable item) {
 ...
 }
}

20

Interfaces as types

Types in Java
• In Java, every declared variable has a type, e.g.:

String str; // str is a String
Image image; // image is an Image.
Object obj; // obj is an Object.
int someNum; // someNum is an int

• The type of the object specifies which methods can
be called on it, e.g.:
str.length(); // ok
obj.length(); // won't compile;

22

Interfaces as types
• Once you have defined an interface and

implemented it in one or more classes, you can:

• Declare a variable of the interface type
• final Listable item1 = new Date();

final Listable item2 = new Pet();

...

item1.getImage(); // ok
item2.getDescription(); // ok

Interfaces as types
• Once you have defined an interface and

implemented it in one or more classes, you can:

• Declare a variable of the interface type

• Declare a parameter of the interface type
• void addItem (Listable item) {

 drawImage(item.getImage());
 writeDescription(item.getDescription());
}

Interfaces as types
• Once you have defined an interface and

implemented it in one or more classes, you can:

• Declare a variable of the interface type

• Declare a parameter of the interface type

• Return a variable of the interface type
• Listable getListItem () {

 final Listable date = new ClassicDate();
 return date;
}

Interfaces as types
• Once you have defined an interface and

implemented it in one or more classes, you can:

• Declare a variable of the interface type

• Declare a parameter of the interface type

• Return a variable of the interface type

• Declare an array of variables of the interface type
• final Listable[] dateHistory =

 new Listable[getNumDates()];

Interfaces as types
• A class can implement any number of interfaces,

e.g.:

class Pet implements Listable, Serializable {
 ...
}

• In contrast, a class can have at most one parent
class.

• In this sense, interfaces are more flexible.

27

Interfaces as types
• Interfaces cannot be instantiated:

• final Listable item = new Listable(); // wrong

Interfaces as types
• Interfaces cannot be instantiated:

• final Listable item = new Listable(); // wrong

• Why not?

• What code should be executed in the following?

• item.getImage();

Interfaces as types
• Interfaces cannot be instantiated:

• final Listable item = new Listable(); // wrong

• Why not?

• What code should be executed in the following?

• item.getImage();

The getImage() method is abstract in the
interface — no implementation!

Exercise
• Suppose we have an interface Identifiable:

• interface Identifiable {
 String getName();
 String getAddress();
 long getSSN();
}

• Create a class Person that implements
Identifiable.

31

Solution
class Person implements Identifiable {

 public String getName() {
 return "Bo";
 }

 public String getAddress() {
 return "1 Main St";
 }

 public long getSSN() {
 return 1234;
 }

}

32

Subinterfaces

33

Subclasses (review)

• Suppose there is a class A, and another class B
that inherits from A.

• Now, suppose a third class, C, inherits from B.

• Then C inherits the union of the methods in both A
and B.

34

A

B

C

extends

extends

Subinterfaces
• Similarly to how classes can have subclasses,

interfaces can have subinterfaces.

• The subinterface inherits all the methods from the
parent interface.

• A class C that implements the subinterface B (that
extends interface A) must implement the union of
the methods in A and B.

35

A

B

C

extends

implements

Example
• interface A {
 void method1 (int num);
 String method2 ();
}

interface B extends A {
 void method3 (String word);
}

class C implements B {
 public void method1 (int num) {
 }
 public String method2 () {
 return “..."
 }
 public void method3 (String word) {
 }
}

36

Exercise

• Suppose we have an interface Listable:

• interface Listable {
 public Image getImage ();
 public String getDescription ();
}

• Create a subinterface NamedListable.
• Returns a name for the object

37

Solution
• interface NamedListable extends Listable
{
 public String getName();
}

• class NamedPet extends Pet implements
NamedListable {
 public String getName() {
 return “Spot”;
 }
}

38

Interfaces as
contracts

39

Interfaces as contracts
• So far, we have discussed how a Java interface

defines a type of object.

• One of the main purposes of interfaces is to
guarantee that certain methods exist, e.g.:
• interface Listable {

 Image getImage ();
 String getDescription();
}

• interface SmileDetector {
 public boolean isImageSmiling (Image face);
}

Interfaces as contracts
• Interfaces also facilitate division of labor between

members of a team.

• Interfaces separate what a class does:

interface SmileDetector {
 /**
 * Returns whether or not the specified face is smiling.
 * @param face the face (48x48 pixels) to analyze.
 * @return whether the face is smiling.
 */
 public boolean isImageSmiling (Image face);
}

Just the signature

Interfaces as contracts
• Interfaces also facilitate division of labor between

members of a team.

• …from how it does it:

class NeuralNetworkSmileDetector implements SmileDetector {
 private float[][] _weights;

 /**
 * Returns whether or not the specified face is smiling.
 * @param face the face (48x48 pixels) to analyze.
 * @return whether the face is smiling.
 */
 public boolean isImageSmiling (Image face) {
 ...
 }
} The actual implementation

Interfaces as contracts

• This leads to a natural division of labor:

• The user of an interface does not have to care
how it is implemented.

• The implementer does not have to care how it is
used.

43

Interfaces as contracts

I’ll implement
the smile
detector.

Ok I’ll use the
detector in my

game.

Interface

public class MyGame {
 void someMethod () {
 SmileDetector detector = ...
 ...
 if (detector.isImageSmiling(im)){
 ...
 }
 }
}

public class SomeSmileDetector
 implements SmileDetector {
 ...
 boolean isImageSmiling (Image face) {
 float minDistance = ...
 }
}

Interfaces as contracts

• The interface serves as a software contract
between user and implementer.

• It acts as a “wall”:

• Whatever changes behind the “wall” doesn’t
affect the other programmer.

45

Interfaces as contracts
• The interface specifies mutual requirements between

implementor and user.

interface SmileDetector {
 /**
 * Returns whether or not the specified face is smiling.
 * @param face the face (48x48 pixels) to analyze.
 * @return whether the face is smiling.
 */
 public boolean isImageSmiling (Image face);
}

• In this case, the user is required to pass in a face of size
48x48. The implementor is required to produce an
estimate (true/false) of whether the face is smiling.

46

Abstract classes

47

Abstract classes
• In addition to classes and interfaces, Java also offers a

programming construct with some features of both:
abstract classes.

• This is useful for refactoring classes that have some
variables and/or methods in common.

• Abstract classes are allowed to contain:
• Variables
• Concrete methods (signature & implementation)
• Abstract methods (signature only)

48

Abstract classes
• Abstract methods must be declared with abstract.

• Abstract classes must be declared with abstract.

• Abstract classes cannot be instantiated.

• To be useful, an abstract class must be extended by
a concrete subclass.

• The subclass must implement all of the abstract
methods.

49

Refactoring with abstract classes:
example

• class Fish {
 private ArrayList<String> _messages;
 void sendMessage (String message) {
 _message.add(message);
 }
 public void draw (Graphics g) {
 // Draw:

 }
}

• class Pterodactyl {
 private ArrayList<String> _messages;
 void sendMessage (String message) {
 _message.add(message);
 }
 public void draw (Graphics g) {
 // Draw:

 }
}

50

• abstract class Animal {
 private ArrayList<String> _messages;
 void sendMessage (String message) {
 _message.add(message);
 }
 public abstract void draw (Graphics g);
}

• class Fish extends Animal {
 @Override // asks the compiler to check that parent method exists
 public void draw (Graphics g) {
 // Draw:

 }
}

• class Pterodactyl extends Animal {
 @Override // asks the compiler to check that parent method exists
 public void draw (Graphics g) {
 // Draw:

 }
}

51

Refactoring with abstract classes:
example

• abstract class Animal {
 private ArrayList<String> _messages;
 void sendMessage (String message) {
 _message.add(message);
 }
 public abstract void draw (Graphics g);
}

• class Fish extends Animal { ... }

• class Pterodactyl extends Animal { ... }

• Animal animal = new Animal(); // error: cannot
instantiate abstract class
Animal animal = new Pterodactyl(); // ok
animal.sendMessage("Yo!");
animal.draw(g);

52

Refactoring with abstract classes:
example

• Why not just define an empty draw() method in
Animal and make the class non-abstract?

• If Animal were a regular class, it could be
instantiated, but nothing would be drawn.

• With abstract, we can let the compiler prevent
a(nother) programmer from erroneously creating an
Animal object.

53

Refactoring with abstract classes:
example

Exercise

54

abstract class A {
 abstract void q ();
}

interface X {
 void m (Object o);
 X n ();
}

interface Y {
 int p (int j);
 A me ();
}

class C implements X, Y {
 // Your code here!

 // No returning null!
}

Solution
abstract class A {
 abstract void q ();
}

interface X {
 void m (Object o);
 X n ();
}

interface Y {
 int p (int j);
 A me ();
}

class C implements X, Y {
 // Your code here!

 // No returning null!
}

55

class C implements X, Y {

 void m (Object o) { return; }

 X n () { return this;}

 int p (int j) { return j+1; }

 A me () {
 return new A_concrete();
 }

 class A_concrete extends A {
 void q() { return; }
 }

}

Key-points: classes,
interfaces, & OO design

1.Classes bundle together a coherent set of actions
(methods) and attributes (instance variables).

2.Common actions and attributes can be factored
out of multiple classes using inheritance — this can
yield a class hierarchy of both abstract (non-
instantiable) and concrete classes.

56

Key-points: classes,
interfaces, & OO design

3.Interfaces allow the programmer to specify a set of
methods that every implementing class is required to offer.

4.Interfaces also serve as a software contract that naturally
supports a division of labor among programmers.

5.In Java, a class can inherit from at most one parent
class, but can implement any number of interfaces.
Hence, before using inheritance, ask yourself whether an
interface would do the job just as well.

57

Inheritance versus
ownership

• Inheritance is an often overused tool in OOP.

• Very often, ownership should be used instead.

58

Inheritance versus
ownership

• Suppose we want every Profile in PetDate.net to
have a profile picture (Image).

59

Species: Rabbit
Age: 2 yrs
WPI Major: CS
Favorite Food: Crocuses

“Just looking for someone to hang with.”

Harry B.

http://match.com

Inheritance versus
ownership

• Suppose we want every Profile in PetDate.net to
have a profile picture (Image).

• Image has several methods, including:
• double getWidth() { ... } // gets width of image

• double getHeight() { ... } // gets height of image

• void convertToGrayscale () { ... }

60

http://match.com

Inheritance versus
ownership

• Rather than duplicate these methods, Profile
can “borrow” this functionality from Image via:

• Inheritance

• Ownership

61

Inheritance
• class Profile extends Image { // Inheritance

 ...
}

• Now, Profile automatically has getWidth() and
getHeight() methods.

• How handy!

62

Inheritance
• class Profile extends Image { // Inheritance

 ...
}

• Advantage:

1. Simple — just two words in the declaration.

63

Inheritance
• class Profile extends Image { // Inheritance

 ...
}

• Disadvantages:

1. Inflexible: With Java, Profile can no longer
inherit from any other parent class.

64

Inheritance
• class Profile extends Image { // Inheritance

 ...
}

• Disadvantages:

2. Awkward semantics: is Profile really a
special type of Image??

65

Inheritance
• class Profile extends Image { // Inheritance

 ...
}

• Disadvantages:

3. Unsafe: Image has many other methods that
have nothing to do with a Profile, e.g.:
void convertToGrayscale() { ... }

66

Inheritance
• class Profile extends Image { // Inheritance

 ...
}

• Disadvantages:

3. Unsafe: Image has many other methods that
have nothing to do with a Profile. We do not
want these methods to be callable on objects
of type Profile (could be dangerous):
...
profile.convertToGrayscale(); // yuck!

67

Ownership

68

• class Profile {
 private Image _image; // ownership
}

• Alternatively, Profile can own an Image object.

• To access Image’s getWidth() and
getHeight() methods, Pet just needs to
delegate to Image…

Ownership

69

• class Profile {
 private Image _image; // ownership

 public double getImageWidth () {
 return _image.getWidth(); // delegation
 }

 public double getImageHeight () {
 return _image.getHeight(); // delegation
 }
}

• Delegation: “forward” a message sent to class A
(Profile) to another class B (Image).

Ownership

70

• class Profile {
 private Image _image; // ownership

 ...
}

• Advantages:

1. Flexible: still allows Profile to inherit from any
other class.

Ownership

71

• class Profile {
 private Image _image; // ownership

 ...
}

• Advantages:

2. Safer: Profile only exposes the necessary
functionality of Image that it needs.

Ownership

72

• class Profile {
 private Image _image; // ownership

 ...
}

• Advantages:

3. Cleaner semantics: Profile and Image are
(appropriately) no longer part of the same
class hierarchy.

Ownership

73

• class Profile {
 private Image _image; // ownership

 public getImageWidth () {
 return _image.getWidth(); // delegation
 }

 public getImageHeight () {
 return _image.getHeight(); // delegation
 }
}

• Disadvantage:

1. More code: we have to write delegating methods.

Inheritance vs. Ownership

• Use inheritance sparingly — each class can have
at most one parent class.

• Inheritance usually conveys an “is a” relationship
(e.g., Fish is an Animal).

• Ownership often conveys a “has a” relationship
(e.g., a Profile has an Image).

74

Design choice

• When making architectural decisions in OOP, there
are usually trade-offs.

• Overall, for this example I would recommend
ownership rather than inheritance.

75

Type-safety and casting
• interface Date {

 public int getNumParticipants ();
 public String getActivity ();
 public String getTime ();
 ...
}

• abstract class AbstractDateImpl implements Date {
 private String _activity, _time;
 public String getActivity () {
 return _activity;
 }
 public String getTime () {
 return _time;
 }
 public abstract int getNumParticipants ();
}

Type-safety and casting

• class SimpleDate extends AbstractDateImpl {
 private Couple _couple;
 public int getNumParticipants () {
 return 2;
 }
}

• class Couple {
 private Pet _pet1, _pet2;
 public Couple (Pet pet1, Pet pet2) {
 _pet1 = pet1;
 _pet2 = pet2;
 }
}

Type-safety and casting

• class DoubleDate extends AbstractDateImpl {
 private Couple _couple1, _couple2;
 public int getNumParticipants () {
 return 4;
 }
 public Couple[] getCouples () {
 return new Couple[] { _couple1, _couple2 };
 }
}

Type-safety and casting

Casting
• Objects are cast into different classes/interfaces

when we assign them to variables declared of
different types:

class A { ...
}
class B extends A { ...
}

final B b = new B();

A

B
subclasses

Casting
• Objects are cast into different classes/interfaces

when we assign them to variables declared of
different types:

class A { ...
}
class B extends A { ...
}

final B b = new B();
final A a = b; // Upcast from B to A.

A

B
subclasses

Casting
• Objects are cast into different classes/interfaces

when we assign them to variables declared of
different types:

class A { ...
}
class B extends A { ...
}

final B b = new B();
final A a = b; // Upcast from B to A.
final B b2 = (B) a; // Downcast from A to B.

A

B
subclasses

Casting
• Objects are cast into different classes/interfaces

when we assign them to variables declared of
different types:

class A { ...
}
class B extends A { ...
}

final B b = new B();
final A a = b; // Upcast from B to A.
final B b2 = (B) a; // Downcast from A to B.

A

B
subclasses

The terms upcast and downcast have to do with the class
hierarchy, in which parent classes are “above” child classes.

Run-time type-checking
• The JVM enforces type-safety at run-time:

• Every object knows what kind of class it is, what
its parent class is, and all the interfaces that it
implements.

• If you attempt to downcast an object into a type
with which it is not compatible, then your
program will throw a ClassCastException.

• Your program will terminate.

Run-time type-checking

• Example:

final Date gd = new GroupDate();
final SimpleDate sd = (SimpleDate) gd; // run-time error

• This will result in a ClassCastException
because a GroupDate is never also a
SimpleDate.

Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

Run-time type-checking
• We can also cast to an interface type, e.g.:

final Object o = new SimpleDate();
final Date date = (Date) o;

• Since not every object of Object class is
guaranteed to implement the Date interface, we
must “downcast” to Date.

• At run-time, the JVM will check whether o is of some
class that implements Date, and throw a
ClassCastException if it is not.

Dynamic dispatch
• Suppose we have the following class hierarchy:

• class A {
 public void m () {
 System.out.println("A");
 }
}
class B extends A {
 public void m () {
 System.out.println("B");
 }
}
final A a = new B();
a.m();

• Which version of m will be called?

87

Dynamic dispatch
• In Java, every object “remembers” the class from

which it was instantiated.

• Since the same object can have multiple types, the
method that is invoked depends on the class from
which the object was instantiated.

• This is determined by the JVM at run-time and is
known as dynamic dispatch.

88

Dynamic dispatch: exercise

public class A {
 void m () {
 System.out.println("A");
 }
}
public class B extends A {
 void m () {
 System.out.println("B");
 }
}

89

public class C {
 A someOtherMethod () {
 return new B();
 }
 void someMethod () {
 final A a = new B();
 a.m();

 final A a2 = (A) someOtherMethod();
 a2.m();

 B b = (B) (new A());
 b = new B();
 b.m();

 final B b2 = new B();
 ((A) b2).m();
 }
}

• class GroupDate extends AbstractDateImpl {
 private Couple[] _couples;
 private Pet[] _singles;
 public int getNumParticipants () {
 return 2*_couples.length + _singles.length;
 }
 public Couple[] getCouples () {
 return _couples;
 }
}

Type-safety and casting

• We can visualize these in one class/interface diagram:
Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

implements

extends

Example

interface

concrete
implementations

abstract base class

Objects can have multiple
types

• For example, every
DoubleDate object can also
be referred to as a Date or a
AbstractDateImpl:

final DoubleDate ddate =
 new DoubleDate();
final Date d = ddate;
final AbstractDateImpl a = ddate;

Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

• When using interfaces and class hierarchies to model
data relationships, the same object can have multiple
types.

Objects can have multiple
types

• For example, every
DoubleDate object can also
be referred to as a Date or a
AbstractDateImpl:

final DoubleDate ddate =
 new DoubleDate();
final Date d = ddate;
final AbstractDateImpl a = ddate;

Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

• When using interfaces and class hierarchies to model
data relationships, the same object can have multiple
types.

All three of the declared variables
— ddate, d, and a — all point to

the same object (which is a
DoubleDate).

Type-safety in Java
• Since Java is a type-safe language, it enforces that

methods can only be called on objects that implement
them.

• E.g., cannot allow getCouples() to be called on a
String object.

• Two kinds of type-checking:

• Compile-time (Java compiler).

• Run-time (Java Virtual Machine).

Objects can have multiple
types

• The declared type of the variable
dictates which methods can be
called on the object:

final DoubleDate ddate =
 new DoubleDate();
final Date d = ddate;
final AbstractDateImpl a = ddate;

Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

Declared types

Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

• interface Date {
 public int getNumParticipants ();
 public String getActivity ();
 public String getTime ();
 ...
}

• abstract class AbstractDateImpl implements Date {
 private String _activity, _time;
 public String getActivity () {
 return _activity;
 }
 public String getTime () {
 return _time;
 }
 public abstract int getNumParticipants ();
}

• class DoubleDate extends AbstractDateImpl {
 private Couple _couple1, _couple2;
 public int getNumParticipants () {
 return 4;
 }
 public Couple[] getCouples () {
 return new Couple[] { _couple1, _couple2 };
 }
}

Objects can have multiple
types

Objects can have multiple
types

• Method calls will compile only if
they are compatible with the
object’s declared type.

final DoubleDate ddate =
 new DoubleDate();
final Date d = ddate;
final AbstractDateImpl a = ddate;

d.getNumParticipants();
a.getNumParticipants();
d.getCouples();
a.getCouples();
ddate.getCouples();

Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

Which of these lines of code
will compile?

1
2
3
4
5

Objects can have multiple
types

• Method calls will compile only if
they are compatible with the
object’s declared type.

final DoubleDate ddate =
 new DoubleDate();
final Date d = ddate;
final AbstractDateImpl a = ddate;

d.getNumParticipants(); // ok
a.getNumParticipants(); // ok
d.getCouples(); // not ok
a.getCouples(); // not ok
ddate.getCouples(); // ok

Date

AbstractDateImpl

SimpleDate DoubleDate GroupDate

1
2
3
4
5

Compile-time type-checking

• Java verifies at compile-time that the type of
object assigned to a variable is consistent with the
variable’s declared type:

// not ok — an Integer is never a string
final String s = new Integer(1234);

Notation in CS 2103
• The name of a Java class should be in mixed-case like this:

• class ImageAnalyzer

• It should not be any of the following:

• class imageAnalyzer // camel-case

• class IMAGEANALYZER // all-caps

• class Image_Analyzer // underscored

• class imageanalyzer // all lower-case

• class IMageAnalyzer // just sloppy

Notation in CS 2103
• Instance variables, local variables, method

parameters, and instance methods should all be
written in camel-case, e.g.:

• class Person {
 private int _minAge, _maxAge;

 public void sendMessage (Person personToWrite) {
 Message theMessage = new Message();
 // ...
 }
}

Notation in CS 2103
• Some programmers like to denote each instance

variable with an underscore _ or an “m” that
precedes the rest of the name, e.g.:

• class Person {
 private int _minAge, _maxAge;

 public void sendMessage (Person personToWrite) {
 Message theMessage = new Message();
 // ...
 }
}

• Either (or none) is ok — just be consistent.

Notation in CS 2103
• Some programmers like to denote each instance

variable with an underscore _ or an “m” that
precedes the rest of the name, e.g.:

• class Person {
 private int mMinAge, mMaxAge;

 public void sendMessage (Person personToWrite) {
 Message theMessage = new Message();
 // ...
 }
}

• Either (or none) is ok — just be consistent.

Notation in CS 2103

• Constants (values that never change) should be
declared as static final and be named with
all-caps with underscores, e.g.:

• class Person {
 protected static final int MAX_AGE = 130;
 // ...
}

Code Structure in CS 2103

• Keep methods <= 50 lines for readability.

• If your method is much longer, that’s likely a sign
that your method is trying to do too much and
should be decomposed into multiple methods.

105

Access modifiers

• One way to avoid bugs in a programming project is
to allow the programmer to access only what they
need (“need-to-know basis”).

• Rationale: If a variable/method in class A cannot
be accessed from class B, then class B cannot
possibly mess it up.

106

Access modifiers

• To facilitate this “need to know” behavior, Java
offers four access modifiers:

• private

• (default) — “package-private”
• protected

• public

107

Most
restrictive

Least
restrictive

private
• Only methods within the same class can access

the variable/method/class.

• public class A {
 private int _number;
 public void f () {
 _number = 5; // ok
 }
}
public class B {
 public void g () {
 final A a = new A();
 a._number = 5; // error
 }
}

108

private
• Not even subclasses can access private members

of a parent/ancestor class:

• public class A {
 private int _number;
 public void f () {
 _number = 5; // ok
 }
}
public class S extends A {
 public void g () {
 _number = 5; // error
 }
}

109

(default) package-private

• Java classes can belong to “packages”, e.g.:
java.util.ArrayList is in the java.util
package.

• Classes in the java.util package must be in the
java/util directory and must declare
“package java.util;” at the top of the file.

110

(default) package-private
• Package-private variables/methods/classes can be

accessed by every class within the same package:

• package somePackage;
public class A {
 String _name; // no modifier; hence, package-private
}

• package somePackage;
public class B {
 public void f () {
 final A a = new A();
 a._name = "Zeus"; // ok
 }
}

111

protected

• protected class members can be accessed from
classes within the same package and by subclasses:

• public class A {
 protected int _number;
 public void f () {
 _number = 5; // ok
 }
}
public class S extends A {
 public void g () {
 _number = 5; // ok
 }
}

112

public

• public class members can be accessed from any
class.

113

Guidelines on using privacy
modifiers

• In “real-world” projects involving large teams of programmers:

• If you make something public, someone will eventually use it.

• If you later decide it’s too dangerous to keep public, it will be
difficult to restrict access (since code will break).

• Hence, start with the most restrictive access you can get away
with.

• When needed, provide the least access needed to do the job.

• E.g., if only subclasses need access, then make it protected.

114

