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Big ldea

Mobile-oriented deep-learning inference needs to
dynamically adapt to its environment and workload
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How do we approach this?

© Consider the end-to-end workflow of deep learning inference
(ICPE'21, HotEdge'18)

@ React to environmental changes (IC2E'20)
© Allocate resources for large, variable workload (ACSOS'21)
© Improve execution at a low level (PERFORMANCE'20, DIDL'20)
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Background

Mobile-Aware Deep Inference



Background

What is deep learning?

Deep-learning are large and complex
artificial neural networks used to
interpret inputs
@ A common example is CNNs,
which are often used for image
analysis
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Background

What is deep learning?

Two main phases to deep learning models

e Training: We use large amounts of data (often
TBs of data) to train models

» Training a single model can emit as much CO; as
six cars

@ Inference: We take novel input data and use the
model to make a prediction
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Background

Where is it used?

Many mobile applications
use deep learning

@ Snapchat uses deep learning
for face-aware filters )
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Background

Where is it used?

Many mobile applications
use deep learning

@ Snapchat uses deep learning for
face-aware filters

@ Siri and Alexa perform
speech-to-text and question

answering '
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Background

Where is it used?

Many mobile applications
use deep learning

@ Snapchat uses deep learning for
face-aware filters
@ Siri and Alexa perform

speech-to-text and question
answering

o Augment reality uses this for
realistic shadowing
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Background

Challenges

Deep Learning models are

big and complicated

Mobile-Aware Deep Inference
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Background

Challenges

Mobile devices prioritize
battery over computational
power
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Background

Mobile deep inference options
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Three main ways to enable deep learning inference on
mobile devices
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Background

Latency comparison
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Executing on-devicedevice can be much slower than
executing remotely
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Background

Mobile Inference Request Workflow

Mobile phone

Cloud/Edge Server

On-Device
Preprocessing

In-Cloud
Preprocessing
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Background

Mobile Inference Request Workflow

Mobile phone

Cloud/Edge Server

On-Device
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In-Cloud
Preprocessing
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@ Input Capture
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Background

Mobile Inference Request Workflow

Mobile phone

Cloud/Edge Server

On-Device
Preprocessing

In-Cloud
Preprocessing

W

@ Input Capture
@ On-device preprocessing
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Background

Mobile Inference Request Workflow

Cloud/Edge Server

Mobile phone

On-Device
Preprocessing

In-Cloud
Preprocessing

@ Input Capture
@ On-device preprocessing
© Network Transfer
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Background

Mobile Inference Request Workflow

Mobile phone

On-Device
Preprocessing

Cloud/Edge Server

In-Cloud
Preprocessing

@ Input Capture

@ On-device preprocessing
© Network Transfer

@ In-cloud preprocessing
© Execution
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Background

Mobile Inference Request Workflow — Decisions points

Cloud/Edge Server

Mobile phone

On-Device
Preprocessing

In-Cloud
Preprocessing

@ Input Capture

@ On-device preprocessing
© Network Transfer

@ In-cloud preprocessing

© Execution
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Big ldea

Mobile-oriented deep-learning inference needs to
dynamically adapt to its environment and workload
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On-device Preprocessing
Decisions
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On-device Preprocessing
PieSlicer: ICPE'21

Session 7: loT, Embedded Systems, Cloud

Executing deep-learning inference on cloud servers enables the
usage of high complexity models for mobile devices with limited
resources. However, pre-execution time—the time it takes to prepare
and transfer data to the cloud—is variable and can take orders of
‘magnitude longer to complete than inference execution itself. This
pre-execution time can be reduced by dynamically deciding the
order of two essential steps, preprocessing and data transfer, to better
take advantage of on-device resources and network conditions. In
this work we present PIESLICER, a system for making dynamic
preprocessing decisions to improve cloud inference performance
using linear regression models. PIESLICER then leverages these
‘models to select the appropriate preprocessing location. We show
that for image classification applications PIESLICER reduces median
and 99" percentile pre-execution time by up to 50.2ms and 217.2ms
respectively when compared to static preprocessing methods.

PIESLICER: Dynamically Improving Response Time for
Cloud-based CNN Inference

Samuel S. Ogden Xiangnan Kong Tian Guo
ssogden@wpi edu xkong@wpi.edu tian@wpi.edu
‘Worcester Polytechnic Institute ‘Worcester Polytechnic Institute ‘Worcester Polytechnic Institute
ABSTRACT

ICPE *21, April 19-23, 2021, Virtual Event, France

Figure 1: Cloud-based Deep Inference Workflow. In general, there are five
steps: tu -device pr twork transfer @,
in-cloud preprocessing @, and deep learning model execution @. Steps
©-© comprise pre-execution and present opportunities to make dynamic
decisions to reduce latency.

In this work, we characterize pre-execution time and investigate
‘ways to reduce it. Our first goal is to identify and understand factors
s - kil -

SN "

Samuel S. Ogden (CSU: Monterey Bay)

Mobile-Aware Deep Inference

March 17, 2022

18 /67



On-device Preprocessing

Pre-execution Latency by Size
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On-device Preprocessing

Mobile Inference Request Workflow

Mobile phone

Cloud/Edge Server

On-Device
Preprocessing

In-Cloud
Preprocessing

2

Pre-execution time is all the time prior to execution.
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On-device Preprocessing

Mobile Inference Request Workflow

Mobile phone

Cloud/Edge Server

On-Device
Preprocessing

In-Cloud
Preprocessing

W

We can select preprocessing location
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On-device Preprocessing

Mobile Inference Request Workflow

Mobile phone

Cloud/Edge Server

On-Device
Preprocessing

In-Cloud
Preprocessing

We can select preprocessing location
and change how much data we sent across the network
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On-device Preprocessing

Preprocessing Latency Comparison
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Preprocessing in-cloud is faster than on-device at all
measured sizes
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On-device Preprocessing

Network Latency Comparison
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Transferring smaller, already preprocessed images is
almost always better
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On-device Preprocessing

Pre-execution Latency Comparison
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There's a trade-off between preprocessing on-device and
in-cloud to be made
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On-device Preprocessing

Pre-execution Latency Comparison
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On-device Preprocessing

Pre-execution Latency Comparison
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On-device Preprocessing

Core idea

If we change the preprocessing location we can change
our overall latency to reduce latency
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On-device Preprocessing

Core choice

Slow on-device resizing & small transfer
VS.
Big transfer & fast in-cloud resizing
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On-device Preprocessing

Measurements Overview

@ Three different phones: Nexus

5, MotoX4, Pixel2 1.0r
@ Two networks: University, 0.8
Residential g
e Two datasets: image-1k, £0.6/
image-5k %5 0.4
@ Measured data: g
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On-device Preprocessing

Measurements with image-1k
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On-device Preprocessing
Model Types

Models to try

e Linear Model Combination Factors
o K-Nearest Neighbors (KNN) @ Phones (3)
e Random Forest (RF) o Networks (2)
e Lasso e Dataset (2)
@ Support Vector Regression @ Total variations: 36
(SVR)
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On-device Preprocessing
Modeling goals

Goals

o Accurate
o Fast to use

o Fast to train
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On-device Preprocessing

Modeling performance

== SVR
© KNN
9¢€ Linear
=+ RandomForest -
Lasso
0.005 100 200 300 400 500

Mean Average Percent Error (MAPE)
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Modeling performance

On-device Preprocessing

== SVR
©- KNN
o€ Linear
........................................................................ += RandomForest -
Lasso
200 300 400 500
Mean Average Percent Error (MAPE)
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On-device Preprocessing
Modeling Options

| KNN | SVR | Linear

Accuracy
Time to Use
Time to Train
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On-device Preprocessing
Modeling Options

| KNN | SVR Linear

Accuracy Best | Very Good | Good
Time to Use
Time to Train
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On-device Preprocessing
Modeling Options

| KNN | SVR Linear
Accuracy Best | Very Good | Good
Time to Use | Slow | Fast Fast
Time to Train
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On-device Preprocessing
Modeling Options

| KNN | SVR Linear
Accuracy Best | Very Good | Good
Time to Use | Slow | Fast Fast
Time to Train | N/A | Slow Fast
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On-device Preprocessing
Modeling Options: Linear

| KNN | SVR Linear
Accuracy Best | Very Good | Good
Time to Use | Slow | Fast Fast
Time to Train | N/A | Slow Fast
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On-device Preprocessing

Experimental Summary

3 Mobile Devices

@ Nexus 5
Baselines o MotoX4
e Static local @ Pixel 2
e Static remote 2 WiFi Networks
e Static minimum (empirical @ Residential (slow)
optimal) @ University (fast)
1 Datasets
e image-1k
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On-device Preprocessing

Decision Accuracy

| Residential | University

Low-End | 0.987 0.980
Mid-End | 0.988 0.987
High-End | 0.990 0.983
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On-device Preprocessing

Latency Comparisons Summary

‘ Residential ‘ University
Device | Algorithm | 50 95th 99th | 50t 95t 99t
Optimal 713.2ms 1231.0ms 1876.6ms | 707.2ms 1215.7ms 1984.5ms
Low-End In-Cloud 922.6% 1094.7%  1524.9% | 274.2% 288.8% 316.9%
On-Device 100.1% 100.0% 100.0% | 100.5% 101.0% 100.0%
PIESLICER 95.0%  100.3%  113.8% | 93.4% 94.5% 94.1%
Optimal 582.4ms  875.6ms 1316.1ms | 502.4ms  749.7ms 1090.2ms
Mid-End In-Cloud 1082.3%  1353.0% 1003.1% | 275.4% 599.5% 502.6%
On-Device 100.1% 100.0% 103.1% | 100.3% 100.0% 100.0%
PIESLICER 97.3% 96.7% 83.5% 97.6% 96.6% 94.1%
Optimal 448.7ms  690.0ms  979.8ms | 384.2ms  666.7ms  951.7ms
High-End In-Cloud 1457.6% 1818.5%  1454.4% | 234.9% 238.8% 223.9%
On-Device 100.1% 100.0% 100.0% | 100.2% 102.1% 100.0%
PIESLICER 98.9% 96.3% 104.7% 98.1% 98.7% 105.7%
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On-device Preprocessing
Other Benefits: Bandwidth reduction

All Residential University
All 4.47% 1.88% 4.10%
Low-End | 5.44% 1.91% 4.93%
Mid-End | 4.74% 1.86% 4.79%
High-End | 7.26% 1.86% 7.33%
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On-device Preprocessing Decisions
What did we see?

@ By looking at the overall workflow we can find better potential
optimizations
@ Using simple but accurate models is often sufficient for our cases
» Simple models let us be really quite accuratel!

© We can save a significant amount of time and latency!
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On-device Preprocessing Decisions

Remaining questions

@ How can we make use of this extra time? (next section)

@ Are there cases when this doesn’t work as well? (current work
direction)
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In-cloud Execution Adjustment
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In-cloud Execution Adjustment
MDlnference: 1C2E'20

2020 IEEE International Conference on Cloud Engineering (IC2E)

MDINFERENCE: Balancing Inference Accuracy and Latency
for Mobile Applications

Samuel S. Ogden
Worcester Polytechnic Institute
ssogden@wpi.edu

Abstract—Deep Neural Networks are allowing mobile devices
to incorporate a wide range of features into user applications.
However, the computational complexity of these models makes
it difficult to run them effectively on resource-constrained
‘mobile devices. Prior work approached the problem of support-
ing deep learning in mobile applications by either decreasing
model complexity or utilizing powerful cloud servers. These
approaches each only focus on a single aspect of mobile
inference and thus they often sacrifice overall performance.

In this work we introduce a holistic approach to designing
mobile deep inference frameworks. We first identify the key
goals of accuracy and latency for mobile deep inference and the
conditions that must be met to achieve them. We

Tian Guo
Worcester Polytechnic Institute
tian@wpi.edu

for executing inferences entirely on the mobile device with
easy to predict latency but the mobile developer has to
choose between high execution latency or using lower accu-
racy models. In-cloud inference can execute high-accuracy
models with low latency but the reliance on network commu-
nication means i and i y
long, overall response time [8]. Hybrid inference involves
spreading execution between the mobile device and the cloud
allowing for potential reductions in latency, but can result
in worse latency and lower accuracy than purely on-device
or in-cloud

our holistic approach through the design of a hypothetical
rallod Thic loveran

In this paper we e the need for mobile-oriented infer-
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In-cloud Execution Adjustment

Core idea

Adjust execution based on the request
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In-cloud Execution Adjustment

Mobile Inference Request Workflow

Mobile phone

Cloud/Edge Server

On-Device
Preprocessing

In-Cloud
Preprocessing

Focus on better utilizing cloud execution time
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In-cloud Execution Adjustment

Trade-offs between accuracy and latency
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In-cloud Execution Adjustment

Constraints

Constraints

@ Requests are submitted over an unpredictable network

o Needs to enforce a Service Level Agreement (SLA) of maximum
response latency latency

» Measured from user pressing “go!” to the response being back at the
device
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In-cloud Execution Adjustment
Key insight

Chosing different models allows us to adjust
execution latency to compensate for the network
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In-cloud Execution Adjustment

Network variation

=
o N
o wun
o O
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250

Network Latency (ms)

Network variation can be quite Iarge for networks
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In-cloud Execution Adjustment

Proposed Solution

maximize  A(m) (1)

subject to  p(m) 4+ o(m) < Tpudget, m € M (2)

A(m) : accuracy of model m
Thudget : time budget, calculated as Ts; 4 — 2 X Thetwork
p(m) : average of execution latency for model m

o(m) : standard deviation of execution latency for model m
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In-cloud Execution Adjustment

Proposed Solution

maxijmize A(m) (1)

subject to  u(m) + o (m) < Thudget, me M (2)

For each request, calculate a time budget and pick the
most accurate model that will execute within that budget
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In-cloud Execution Adjustment
What does this look like?

Random

MDlInference
Given a reasonable SLA, we can match an SLA closely while using

more complex models
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In-cloud Execution Adjustment
What is a reasonable SLA?

0.9F ° 1.0 a
0 0.9F =e= Static Latency
0.8- S0.8F =e= Static Accuracy
> T 0.7r e Random
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< 0 0.3F
0.5F Q0.2
o
o 0.1F
0.4k L 1 0.0
0 100 200 300 400 500 0 100 200 300 400 500

SLA Target (ms) SLA Target (ms)

MDInference quickly stops using on-device backup
and improves accuracy
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In-cloud Execution Adjustment

How do we increase accuracy?

3 Il MobileNetV1 Family
S 80 I NasNet Mobile
o 3 InceptionV3
§ 60 3 InceptionV4
o) [ NasNet Large
— 40
()
3 20
=
1
0 300 500

200
SLA Target (ms)

400

As the SLA increases the time budget allows MDInference to use
more complex models to improve average accuracy
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In-cloud Execution Adjustment
What is the impact of noise?

SLA = 100ms SLA = 250ms
100 100 ]
(0]
(@]
8
9]
g_J —Accuracy
== SLA Attainment
O 25 50 75 100 % 25 50 75 100

Network Latency CV % Network Latency CV %

As noise (e.g. Coefficient of Variation) increases,
MDInference takes advantage to increase accuracy,
and maintains SLA attainment
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In-cloud Execution Adjustment

How do we leverage noise?

(SLA = 100ms)
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X
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2 |-
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As the noise increases we can opportunistically use more accurate
models, or can compensate with fast models
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In-cloud Execution Adjustment
What did we see?

What we saw
@ Many tasks have a range of available models with
different latency-accuracy trade-offs
» There's a lot of active work on model optimizations,
like quantization
@ By selecting an appropriate model we can maintain
SLAs and yet use higher accuracy models

@ By always keeping a minimal backup model running
on-device we can use this in the rare cases that we
can't respond in time
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In-cloud Execution Adjustment
What did we see?

What we could do better

@ Having all of these models loaded is a large use
of resources (addressed briefly next)

@ What if we knew that an inference would fail to
complete? (current work)
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In-cloud Execution Adjustment

CremeBrulee: ACSOS'21

Many Models at the Edge:

Scaling Deep Inference via Model-Level Caching

Samuel S. Ogden, Guin R. Gilman, Robert J. Walls , and Tian Guo

Computer Science Department, Worcester Polytechnic Institute

{ssogden,grgilman,rjwalls,tian} @wpi.edu

ABSTRACT

Deep learning (DL) models are rapidly expanding in popu-
larity in large part due to rapid innovations in model accuracy,
as well as companies’ enthusiasm in integrating deep learning
into the existing application logic. This trend will inevitably
lead to a deployment scenario, akin to the content delivery
network for web objects, where many deep learning models—
each with different popularity—run on a shared edge with
limited resources. In this paper, we set out to answer the key
question of how to manage many deep learning models at the
edge effectively. Via an empirical study based on profiling
more than twenty deep learning models and extrapolating
from an open-source Microsoft Azure workload trace, we
pinpoint a promising avenue of leveraging cheaper CPUs, rather
than commonly promoted accelerators, for edge-based deep
inference serving.

rimhtn swin Frvmslatn tha TV mndal

managing static, and more recently dynamic, content in CDNs,
the complexity of deep learning models, and the requirements
of using them make model serving complex.

Deep learning models are large in size, over 4GB in
some cases [42], with complex execution graphs that need
to be constructed upon model load. As such, naive memory

may encounter difficulties handling these models,
experiencing unexpected latency variations, and not fully
exploiting the characteristics of models. The scale of the
workload can further the memory
complexity. As deep learning models proliferate, they are being
used in myriad applications that were traditionally served by

central servers o, more recently, run in serverless platforms.

Extrapolating from a serverless trace [35], we expect deep
learning models will see not only a huge number of requests
but also a wide range of popularity, with some models being

reauested manv orders of maenitude more often than others.
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Resource Management
Core Insight

Deep Learning models must be managed like
objects in a cache to improve resource utilization
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Resource Management

Workload extrapolation
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Resource Management

Workload extrapolation
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Keeping models in memory
is more resource intensive
than executing models
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Resource Management
Contribution #1: CPUs are cost efficient
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Resource Management
Contribution #2: Caching of deep learning models

CPU Server

Cache
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Resource Management
Contribution #1: CPUs are cost efficient
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Ongoing Work: On-device
execution decisions
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On-device execution

Core ldea

On-device execution can offload work from caching server
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Resource Management
Contribution #1: CPUs are cost efficient
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Conclusions

@ Approaching deep learning serving from a
mobile-oriented approach can greatly reduce latency
and variability for mobile devices

o Close analysis of workflows can help identify large time
savings

@ Making inference serving aware of end-to-end behavior
allows us to opportunistically improve serving quality

@ Deep learning workloads need to be approached in new
ways to help improve resource utilization
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Future Directions

@ Not all work needs to be done by servers, so move
some work off-device

» Improved processing power and network performance
will continue to shift the balance of on-device and
in-cloud performance

@ Improved awareness of inter-model interactions

» Interconnected workloads introduce dependencies and
resource contention
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