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Big Idea

Mobile-oriented deep-learning inference needs to
dynamically adapt to its environment and workload
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How do we approach this?

1 Consider the end-to-end workflow of deep learning inference
(ICPE’21, HotEdge’18)

2 React to environmental changes (IC2E’20)

3 Allocate resources for large, variable workload (ACSOS’21)

4 Improve execution at a low level (PERFORMANCE’20, DIDL’20)
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Background
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Background
What is deep learning?

Deep-learning are large and complex
artificial neural networks used to
interpret inputs

A common example is CNNs,
which are often used for image
analysis
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Background
What is deep learning?

Two main phases to deep learning models
Training: We use large amounts of data (often
TBs of data) to train models

I Training a single model can emit as much C02 as
six cars

Inference: We take novel input data and use the
model to make a prediction
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Background
Where is it used?

Many mobile applications
use deep learning

Snapchat uses deep learning
for face-aware filters

Siri and Alexa perform
speech-to-text and question
answering

Augment reality uses this for
realistic shadowing
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Background
Challenges

Deep Learning models are
big and complicated
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Background
Challenges

Mobile devices prioritize
battery over computational

power
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Background
Mobile deep inference options

HybridIn-CloudOn-Device

Mobile Device Cloud Server DNN Model Input Image

Three main ways to enable deep learning inference on
mobile devices
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Background
Latency comparison

Nexus 5
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Executing on-devicedevice can be much slower than
executing remotely
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Background
Mobile Inference Request Workflow

❶ Network

❸

Mobile phone Cloud/Edge Server

❺
On-Device 

Preprocessing
❷

In-Cloud 
Preprocessing

❹

1 Input Capture

2 On-device preprocessing

3 Network Transfer

4 In-cloud preprocessing

5 Execution
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Background
Mobile Inference Request Workflow – Decisions points
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Big Idea

Mobile-oriented deep-learning inference needs to
dynamically adapt to its environment and workload
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On-device Preprocessing
Decisions
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On-device Preprocessing
PieSlicer: ICPE’21
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On-device Preprocessing
Pre-execution Latency by Size
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As file size increases pre-execution latency surpasses
execution latency
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On-device Preprocessing
Mobile Inference Request Workflow

❶ Network

❸

Mobile phone Cloud/Edge Server

❺
On-Device 

Preprocessing
❷

In-Cloud 
Preprocessing

❹

Pre-execution time is all the time prior to execution.
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On-device Preprocessing
Mobile Inference Request Workflow

❶ Network

❸

Mobile phone Cloud/Edge Server

❺
On-Device 

Preprocessing
❷

In-Cloud 
Preprocessing

❹

We can select preprocessing location

Samuel S. Ogden (CSU: Monterey Bay) Mobile-Aware Deep Inference March 17, 2022 20 / 67



On-device Preprocessing
Mobile Inference Request Workflow

❶ Network

❸

Mobile phone Cloud/Edge Server

❺
On-Device 

Preprocessing
❷

In-Cloud 
Preprocessing

❹

We can select preprocessing location
and change how much data we sent across the network
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On-device Preprocessing
Preprocessing Latency Comparison
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Preprocessing in-cloud is faster than on-device at all
measured sizes
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On-device Preprocessing
Network Latency Comparison
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Transferring smaller, already preprocessed images is
almost always better
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On-device Preprocessing
Pre-execution Latency Comparison
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There’s a trade-off between preprocessing on-device and
in-cloud to be made
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On-device Preprocessing
Core idea

If we change the preprocessing location we can change
our overall latency to reduce latency
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On-device Preprocessing
Core choice

Slow on-device resizing & small transfer
vs.

Big transfer & fast in-cloud resizing
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On-device Preprocessing
Measurements Overview

Three different phones: Nexus
5, MotoX4, Pixel2

Two networks: University,
Residential

Two datasets: image-1k,
image-5k

Measured data:
I Time (Target)
I Input Size in MB
I Transfer Size in MB
I Resolution in Megapixels
I Input height
I Input width
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On-device Preprocessing
Measurements with image-1k
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On-device Preprocessing
Model Types

Models to try
Linear

K-Nearest Neighbors (KNN)

Random Forest (RF)

Lasso

Support Vector Regression
(SVR)

Model Combination Factors
Phones (3)

Networks (2)

Dataset (2)

Total variations: 36
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On-device Preprocessing
Modeling goals

Goals
Accurate

Fast to use

Fast to train
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On-device Preprocessing
Modeling performance
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On-device Preprocessing
Modeling performance
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On-device Preprocessing
Modeling Options

KNN SVR Linear

Accuracy
Time to Use
Time to Train
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On-device Preprocessing
Modeling Options

KNN SVR Linear

Accuracy Best Very Good Good

Time to Use
Time to Train
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On-device Preprocessing
Modeling Options

KNN SVR Linear

Accuracy Best Very Good Good
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On-device Preprocessing
Modeling Options

KNN SVR Linear

Accuracy Best Very Good Good

Time to Use Slow Fast Fast

Time to Train N/A Slow Fast
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On-device Preprocessing
Modeling Options: Linear

KNN SVR Linear

Accuracy Best Very Good Good

Time to Use Slow Fast Fast

Time to Train N/A Slow Fast
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On-device Preprocessing
Experimental Summary

Baselines
Static local

Static remote

Static minimum (empirical
optimal)

3 Mobile Devices
Nexus 5

MotoX4

Pixel 2

2 WiFi Networks
Residential (slow)

University (fast)

1 Datasets
image-1k
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On-device Preprocessing
Decision Accuracy

Residential University

Low-End 0.987 0.980

Mid-End 0.988 0.987

High-End 0.990 0.983
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On-device Preprocessing
Latency Comparisons Summary

Residential University

Device Algorithm 50th 95th 99th 50th 95th 99th

Optimal 713.2ms 1231.0ms 1876.6ms 707.2ms 1215.7ms 1984.5ms
In-Cloud 922.6% 1094.7% 1524.9% 274.2% 288.8% 316.9%
On-Device 100.1% 100.0% 100.0% 100.5% 101.0% 100.0%

Low-End

PieSlicer 95.0% 100.3% 113.8% 93.4% 94.5% 94.1%

Optimal 582.4ms 875.6ms 1316.1ms 502.4ms 749.7ms 1090.2ms
In-Cloud 1082.3% 1353.0% 1003.1% 275.4% 599.5% 502.6%
On-Device 100.1% 100.0% 103.1% 100.3% 100.0% 100.0%

Mid-End

PieSlicer 97.3% 96.7% 83.5% 97.6% 96.6% 94.1%

Optimal 448.7ms 690.0ms 979.8ms 384.2ms 666.7ms 951.7ms
In-Cloud 1457.6% 1818.5% 1454.4% 234.9% 238.8% 223.9%
On-Device 100.1% 100.0% 100.0% 100.2% 102.1% 100.0%

High-End

PieSlicer 98.9% 96.3% 104.7% 98.1% 98.7% 105.7%
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On-device Preprocessing
Other Benefits: Bandwidth reduction

All Residential University

All 4.47% 1.88% 4.10%

Low-End 5.44% 1.91% 4.93%

Mid-End 4.74% 1.86% 4.79%

High-End 7.26% 1.86% 7.33%
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On-device Preprocessing Decisions
What did we see?

1 By looking at the overall workflow we can find better potential
optimizations

2 Using simple but accurate models is often sufficient for our cases
I Simple models let us be really quite accurate!

3 We can save a significant amount of time and latency!
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On-device Preprocessing Decisions
Remaining questions

1 How can we make use of this extra time? (next section)

2 Are there cases when this doesn’t work as well? (current work
direction)
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In-cloud Execution Adjustment
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In-cloud Execution Adjustment
MDInference: IC2E’20
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In-cloud Execution Adjustment
Core idea

Adjust execution based on the request
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In-cloud Execution Adjustment
Mobile Inference Request Workflow

❶ Network

❸

Mobile phone Cloud/Edge Server

❺
On-Device 

Preprocessing
❷

In-Cloud 
Preprocessing

❹

Focus on better utilizing cloud execution time
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In-cloud Execution Adjustment
Trade-offs between accuracy and latency
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In-cloud Execution Adjustment
Constraints

Constraints
Requests are submitted over an unpredictable network
Needs to enforce a Service Level Agreement (SLA) of maximum
response latency latency

I Measured from user pressing “go!” to the response being back at the
device
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In-cloud Execution Adjustment
Key insight

Chosing different models allows us to adjust

execution latency to compensate for the network
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In-cloud Execution Adjustment
Network variation

Campus WiFi Home WiFi Public WiFi LTE LTE Hotspot
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Network variation can be quite large for networks
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In-cloud Execution Adjustment
Proposed Solution

maximize
j

A(m) (1)

subject to µ(m) + σ(m) < Tbudget , m ∈M (2)

A(m) : accuracy of model m

Tbudget : time budget, calculated as TSLA − 2× Tnetwork

µ(m) : average of execution latency for model m

σ(m) : standard deviation of execution latency for model m
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In-cloud Execution Adjustment
Proposed Solution

maximize
j

A(m) (1)

subject to µ(m) + σ(m) < Tbudget , m ∈M (2)

For each request, calculate a time budget and pick the
most accurate model that will execute within that budget
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In-cloud Execution Adjustment
What does this look like?

Static Latency0
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Given a reasonable SLA, we can match an SLA closely while using
more complex models
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In-cloud Execution Adjustment
What is a reasonable SLA?
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MDInference quickly stops using on-device backup
and improves accuracy
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In-cloud Execution Adjustment
How do we increase accuracy?
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As the SLA increases the time budget allows MDInference to use
more complex models to improve average accuracy
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In-cloud Execution Adjustment
What is the impact of noise?
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As noise (e.g. Coefficient of Variation) increases,
MDInference takes advantage to increase accuracy,

and maintains SLA attainment
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In-cloud Execution Adjustment
How do we leverage noise?
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As the noise increases we can opportunistically use more accurate
models, or can compensate with fast models
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In-cloud Execution Adjustment
What did we see?

What we saw
Many tasks have a range of available models with
different latency-accuracy trade-offs

I There’s a lot of active work on model optimizations,
like quantization

By selecting an appropriate model we can maintain
SLAs and yet use higher accuracy models

By always keeping a minimal backup model running
on-device we can use this in the rare cases that we
can’t respond in time
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In-cloud Execution Adjustment
What did we see?

What we could do better
Having all of these models loaded is a large use
of resources (addressed briefly next)

What if we knew that an inference would fail to
complete? (current work)
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Resource Management
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In-cloud Execution Adjustment
CremeBrulee: ACSOS’21
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Resource Management
Core Insight

Deep Learning models must be managed like

objects in a cache to improve resource utilization
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Resource Management
Workload extrapolation

Extrapolating from existing
workloads, most deep

learning models will be
rarely used
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Resource Management
Workload extrapolation
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Keeping models in memory
is more resource intensive

than executing models
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Resource Management
Contribution #1: CPUs are cost efficient
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Resource Management
Contribution #2: Caching of deep learning models
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Resource Management
Contribution #1: CPUs are cost efficient

By considering
characteristics of deep
learning models we can

decrease added cost due to
caching misses
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Ongoing Work: On-device
execution decisions
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On-device execution
Core Idea

On-device execution can offload work from caching server
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Resource Management
Contribution #1: CPUs are cost efficient

Communication in parallel
with execution on-device
allows for more efficient
resource utilization both
on-device and in-cloud
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Conclusions
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Conclusions

Approaching deep learning serving from a
mobile-oriented approach can greatly reduce latency
and variability for mobile devices

Close analysis of workflows can help identify large time
savings

Making inference serving aware of end-to-end behavior
allows us to opportunistically improve serving quality

Deep learning workloads need to be approached in new
ways to help improve resource utilization
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Future Directions

Not all work needs to be done by servers, so move
some work off-device

I Improved processing power and network performance
will continue to shift the balance of on-device and
in-cloud performance

Improved awareness of inter-model interactions
I Interconnected workloads introduce dependencies and

resource contention
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